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Abstract—A fully-synthesized true-random number generator
(TRNG) using cellular automata as post-processing stage is imple-
mented in an FGPA and in a 130nm CMOS technology. A 3-edge
ring oscillator provides the entropy source based on accumulative
jitter. The post-processing stage uses a programmable array
of cellular automatas and its performance is evaluated for all
possible rules that can be constructed. 1.4Mbits are captured
using the FPGA implementation and the randomness of data is
tested applying NIST tests. One-dimensional cellular automata in
a TRNG is reported reducing bias of output data. In addition, the
fully-synthesized generator is completely verified for fabrication
in 130nm CMOS technology and occupies a final area of 0.0098
mm? where the post-processing stage uses only 0.0023 mm?.

Index Terms—TRNG, Digital design flow, Jitter, Random
number generator.

I. INTRODUCTION

Random number generators are a fundamental part in cyp-
tographic algorithms defining its proper operation. In recent
years, crypto-systems for cloud computing and the internet
of things have done increasing the interest in high quality
random numbers. Furthermore, applications of randomness
includes operations such as banking transactions, data encryp-
tion, logged on websites, secure shells and digital signatures.

Security in crypto-systems relies on the fact that the gen-
erated random numbers are practically unpredictable besides
having uniformity and independence [1-3]. Pseudo random
number generators (PRNGs) are a common solution to get
the necessary random data, but these generators are based on
deterministic algorithms which output data stream is repeated
with a finite period. For this reason, true-random number
generators (TRNGs) are used when there is a necessity of
strong security. TRNGs make usage of physical randomness,
as entropy source, which is the only way to produce truly
non-deterministic data behavior.

A high quality entropy source, required to produce un-
predictable numbers, needs to be robust. The robustness of
physical sources requires a careful design that can be imple-
mented in analog and digital domain. Based on analog domain
such as a resistor-amplifier-ADC chain, TRNGs present some
voltage bias and are very sensible to variations in process,
voltage and temperature (PVT) [4]. The randomness also can
be disrupted by device drift due to aging [5] and also, the
analog ones have low scalability to another process technology.

Considering the disadvantages of the generators based on
analog domain, digital and specially fully-synthesized based
TRNGs are attractive alternatives to reduce implementation
complexity besides overcoming effects of PVT.

Despite the fact that logic in digital TRNGs are less
sensitive to PVT variations, the digital entropy sources can
be affected by mismatch and another effects which may result
in a tendency of the output data to certain values and low
randomness. Therefore, digital generators, as the analog ones,
may not get enough randomness to be used in cryptographic
applications by themselves. For this reason, an additional post-
processing step that ensures good random qualities, is usually
added to the generator [3], [6].

In this work, we propose a fully-synthesized post-processing
technique based on cellular automata (CA) that complements a
TRNG based multimode ring oscillator [7] with four different
length rings. The CA based post-processing stage provides a
low-hardware overhead solution over other based on classical
PRNGs. The post-processing stage can be programmed with
different cellular automatas in order to identify which rules
achieve better statistical properties. Verification of randomness
is carried out through NIST tests where eight rules outperform
the output of the TRNG. Implementation is performed in
FPGA and fully synthesized in 130nm for fabrication.

II. THE TRUE RANDOM PROPOSED SCHEME

The proposed TRNG like most of the hardware-
implemented generators are composed by an entropy source,
an extraction stage and a post-processing stage. Fig. 1 shows
the schematic of the proposed implementation indicating
the four entropy sources, the capture stage and the cellular
automata based post-processing stage called "Rule_X". The
entropy source is based on the accumulative jitter of ring
oscillators (RO) proposed by [7]. The capture stage operates
as extractor of random numbers and the post-processing stage
exploits the pseudo random behavior of different cellular
automatas rules to improve statistical properties.

A. Entropy Source

The entropy source is based on jitter accumulation in
multimode ring oscillators. The implemented entropy stage
uses four sources that consist in different-length ROs getting
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Fig. 1. TRNG schematic: the source of entropy (left), extraction (center),
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3-edge Ring Oscillator

|: al:: BD c|cLka

Conventional Ring Oscillator

START

CLKB

Fig. 2. Multimode RO (top), Conventional RO (bottom) [7]. Note the points
A, B and C at the input in nand gates.

different oscillation frequencies and required cycles to col-
lapse. Each source has a pair of multimode and normal RO
with 9, 15, 27 and 51 stages. Fig. 2 shows the schematic of
a 9 stages pair of ROs as example. ROs are multiplexed in
order to probe the performance of the TRNG under different
input oscillations.

In a conventional RO, a NAND gate enables and disables
the oscillation; when a logical one appears in the enable input
Start, an edge begins to spread between the inverters until the
last stage causing an oscillation with a nominal frequency. In
a similar way, when a logical one appears in a multimode
RO, injects 3 edges simultaneously in the NAND gates by the
signal Start generating an oscillation at 3x nominal frequency
spreading along the ring. As three edges accumulate jitter
from thermal noise, eventually two neighboring edge collapse,
forcing the RO to oscillate to the nominal 1x frequency mode.

Fig. 3 shows the time domain of signals in points A, B and
C coming out of Fig. 2 to explain the concept. Signals at points
A, B and C oscillate to a higher frequency than nominal for
an unpredictable time (number of cycles) with a width pulse
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Fig. 3. Time graph of oscillations: Node A (a), Node B (b) and node C (c).
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Fig. 5. Capture stage [7].

variation due to jitter. This variation causes two neighboring
edges collapse, forcing the RO to oscillate with the 1x nominal
frequency.

Other transient simulation is shown in Fig. 4 to analyze the
frequency collapse, the upper figure shows the measurement
of the frequency change of bottom figure. Simulations are
performed with a greater number of inverter stages than in
Fig. 3 to improve the collapse time. The upper figure shows
how the frequency goes initially to zero due to inputs of the
NANDs are put to zero by a short time and then goes up
to 2.1 GHz approximately, value maintained until collapse
occurs and frequency goes down to 700 MHz. Bottom figure
illustrates the same behavior in time domain where the zoom
allows us to see the collapse event in similar way than in
Fig. 3.

The extraction of random bits is done through the CAP-
TURE stage as is shown in Fig. 5. The method to extract
random bits consists in counting the cycles of the 3-edge RO
until a collapse occurs with a 14-bit cycle counter. A digital
frequency phase detector (PFD) identifies the collapse event
of frequency and trigger the output register. There are two SC
latches used to prevent false triggering and the Pulse Generator
is an edge detector that deliveries a constant width pulse to
reset the latches and the output register.

B. Cellular Automates as Post-Processing

The cellular automata was proposed in 1982 by Stephen
Wolfram and can be considered as a discrete differential
equation that by iterations develops a series of binary numbers,
where the coefficients of these differential equations determine
the cellular automata behavior. A one-dimensional cellular
automata has 3 coefficients that can be combined in 8 different
forms [8]. Table I shows an example of how to calculate each
possible combination with its corresponding output. There are



R_Out[@] §»10m[@]
]
R_OUt1] ShT_outrd o
o )
_ A—
. Bo— O
(@]
. Co— L
° (=]
L’Z
R_Out[12] S T_outt12
]
R_OUt[13] S T_outr13)

Fig. 6. Rule_X stage: Array of PCA used for post processing

8 different cellular automatas that can be configured in 256
different ways or rules [6].

The behavior of the 256 rules is different and each one has
pseudo-random outputs, where some of them seem to have a
more random output. This work proposes to study the behavior
of all rules, one by one, in order to identify which ones
accomplishes a better improvement in statistical properties
of the TRNG output. This proposed stage is called Rule_X
and consists in an array of 14 CAs that can be programmed
with the 255 possible different rules. Each programmable CA
(PCA) is composed by a 3 to 8 binary decoder, 8 registers to
store the rule to be used and a logic to capture data as shown in
Fig. 6, where input data come from the 14 bits counter of the
TRNG. The boundary conditions are a closed circle as follows:
the first automata is fed with the bits 1,0 and 13 and the last
automata is fed with bits 0,12 and 13. The post processing
stage allows to set a rule which is stored in the flip-flops and
from there on the process is done through a combinational
logic. This scheme enables the post-processing to be done in
one clock cycle, in order that the dynamic power consumption
occurs only when new data is generated. Furthermore, the
maximum operation frequency varies according to the rule.

This stage was designed with the purpose of studying
the performance of different rules. Moreover, by adding an
external control (with a microcontroller for example) is pos-
sible to change the rule of post-processing during the TRNG
operation. The stage uses in total 340 logic gates and a future
implementation can be optimized as a function of some rules
to reduce the total area. For example, a post-processing stage
fixed with rule 150 uses only 112 logic gates. Finally, this stage
also can be segmented to enhance the maximum frequency.

III. MEASUREMENTS RESULTS

The proposed TRNG is fully-synthesized in a FPGA and
in a digital design flow with 130nm technology. For ade-
quate performance, placement restrictions are added in both

TABLE I
DEFINITION OF A RULE. RULE 30.

State 111 | 110 | 101 | 100 | O11 | 010 | 001 | 000
Output 0 0 0 1 1 1 1 0
30 dec | 128 | 64 32 16 8 4 2 1
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Fig. 7. Layout in FPGA: On the right top side the four ROs are showed, at
right bottom side are the Capture and Rule_x modules and the Tx module
use to extract the data is placed at bottom left side, at right side is a zoom of
a RO layout. 233 Slices, 36 Flip Flops, 409 LUTs.

implementations to the ring oscillators avoiding any external
interference that can be coupled with the rings. The FGPA
implementation is made by using a Spartan 3AN and the ASIC
Implementation was taped-out.

A. FPGA implementation

FPGA implementation helps to verify the performance of
the proposed TRGN. By testing the concept of 3-edge ring
oscillator, each inverter and nand gate are implemented by
using Look Up Tables (LUTs) that allow x,y coordinate
position using constraints in the synthesis environment. Fig. 7
shows the placement in FPGA with the restrictions for the
four ring oscillators, considering the LUTs around rings are
prohibited to avoid interference, and there are a zoom view of
the smallest 9 stages RO.

For validation purpose, a total of 1.4Mbits were captured
in order to apply the tests of National Institute of Standards
and Technology (NIST) [9] to the output data. Outputs for
the 256 rules were analyzed and only 30 showed some
relevant result (nonzero numbers in any tests) with 6 of them
outperforming the original data. Table II shows 14 results
of the applied tests for the 6 outstanding rules. The first
column shows the results without post-processing and the
NonOverlappingTemplate row shows the sum of 148 different
sub-tests. The final row presents the sum of all applied tests
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to identify the improvement over prior output and to select the
rules with better performance. Table III shows the P-VALUES
for Non-rule and rules 105 and 150.

It is possible to see that the rules 85, 105 and 150 obtained
the best punctuation and the rules 75 and 180 were the best
for the Approximate Entropy test. Rule 150 obtained perfect
pass in six of the NIST tests. Rules 105 and 150 provided a
full pass of the 148 sub-tests.

In spite of improving entropy approximation output test
and that the rules 75, 85 and 180 passed the NIST criteria,
none of them reach a value of 100% using non-truncated
data. Fig. 8 shows the test result of Approximated Entropy
(NIST test) according to the number of the output bits for data
without post-processing and for rules 85, 105 and 150. These
results were obtained by applying the NIST test to different
truncation of the output bits. It should be clarified that the
graph of entropy for rules 105 and 150 are exactly the same
and therefore are super-placed on the red graphic. It is also
possible to see that for a number of bits less than 9, these two
rules get enough approximate entropy to pass the NIST test.

B. ASIC Implementation

The TRNG was fabricated in a 130nm CMOS standard
technology with a final area of 170pumx58um and the chip
will be available for testing soon. The Power consumption of
processing and capture stage obtained from synthesis to 1 GHz
frequency is 2.66mW and uses 969 gates. Fig. 9 shows the

TABLE I
MEASURED NIST RANDOMNESS TEST RESULTS.
Rule Non Rule 51 75 85 105 150 180
Frequency 94 94 98 97 100 100 98
BlockFrequency 95 95 100 100 99 99 100
CumulativeSums 93 93 98 97 100 100 98
CumulativeSums 93 93 99 97 100 100 99
Runs 98 98 90 96 99 99 90
LongestRun 99 98 100 98 99 100 100
Rank 99 99 99 97 97 99 98
FFT 99 99 100 99 100 100 100
NonOverlappingTemplate 146 146 142 146 148 148 142
OverlappingTemplate 100 99 98 100 98 99 98
Serial 87 87 95 96 98 98 95
Serial 98 98 97 97 99 99 97
LinearComplexity 96 99 100 98 97 99 99
ApproximateEntropy 91 91 98 97 90 90 98
Sum 1388 1389 1414 1415 1424 1430 1412

TABLE III
MEASURED NIST RANDOMNESS TEST RESULTS WITH P-VALUES FOR NON
RULE AND RULES 105 AND 150.

Rule Non Rule 105 150
P-VALUE | RATE | P-VALUE | RATE | P-VALUE | RATE
Frequency 0.000000 94 0.000818 100 0.000818 100
BlockFrequency 0.000001 95 0.983453 99 0.983453 99
CumulativeSums 0.000000 93 0.867692 100 0.867692 100

CumulativeSums 0.000000 93 0.350485 100 0.350485 100

Runs 0.202268 98 0.145326 99 0.145326 99
LongestRun 0.162606 99 0.798139 99 0.304126 100
Rank 0.145326 99 0.129620 97 0.005358 99

FFT 0.275709 99 0.275709 100 0.275709 100

NonOverlappingTemplate 0.514124 146 0.699313 148 0.779188 148
OverlappingTemplate 0.455937 100 0.137282 98 0.759756 99
Serial 0.000000 87 0.383827 98 0.383827 98

Serial 0.000145 98 0.595549 99 0.595549 99

LinearComplexity 0.213309 96 0.020548 97 0.366918 99

ApproximateEntropy 0.000000 91 0.000000 90 0.000000 90

layout where the four ROs are placed at the left side by forcing
the position through synthesis constraints. Additional blockage
is added to avoid synthesis process places other gates around
ROs. These restrictions help to keep out external frequency
noise sources.

Table IV shows the results in cells and area of synthesizing
PCA array that uses 340 cells, whereas an individual PCA has
18 cells and the final area of the array is 2.319 pm?. This final
area is low if it is compared with the area occupied by a fixed
rule. For instance, the three most outstanding rules are fixed to
make a comparative study with the final implementation and
in the best case the rule 85 occupies more than 40% of final
area. Therefore, the programmable array allows us to exploit
better the area and give the possibility to study all the rules.

TABLE IV
AREA FOR PROGRAMMABLE AND FIXED RULE CA

Name Cells | Arealum™2]
Programmable Rule_X 340 2319
Programmable CA 18 130
Fixed Rule_105 140 1.284
Fixed Rule_150 112 1.283
Fixed Rule_85 126 1.045
Fixed CA 7 90

Table V shows a comparison of this work and a PRNG im-
plementation with post-processing using FPGA. The proposed
TRNG is compact despite the programmable post-processing
stage and offers the advantage of changing the pseudo-random



TABLE V
COMPARISON WITH ANOTHER FPGA IMPLEMENTATION.

Specifications [3] [10] | This work
LUT 308 | 272 409
FF 380 | 807 36
freal[M Hz] 275 - 50

processing during operation.

IV. CONCLUSIONS

This work offers a fully-synthesized TRNG which is im-
plemented in FPGA and ASIC with 130nm technology. The
proposed TRNG uses a post-processing stage based on cellular
automatas, reducing the bias of the output data. Regarding the
FPGA implementation, extracted data allow us to probe the
improvement of using the post-processing stage for 8 specific
rules. The improvement is studied basing on the results of
applying NIST test to data for all possible rules that can
be constructed. Furthermore, the enhancement in approximate
entropy is enough to reach at least 90%, but only two rules pass
the 148 sub-tests. It is necessary to review the post-processing
stage and include combinations of the rules to seek better
results. Finally, the fully-synthesized TRNG was fabricated
to measure the performance of the proposed generator under
ASIC implementation.
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