
A 32-bit 100MHz RISC-V Microcontroller with
10-bit SAR ADC in 130nm CMOS

Ckristian Duran, Luis Rueda D., Giovanny Castillo, Anderson Agudelo,
Camilo Rojas, Luis Chaparro, Harry Hurtado, Juan Romero, Wilmer
Ramirez, Hector Gomez, Javier Ardila, Luis Rueda, Rolando Torres,

Hugo Hernandez, Jose Amaya and Elkim Roa

Design Group of Integrated Systems CIDIC, Universidad Industrial de
Santander, Bucaramanga, Colombia

ckristian.duran@correo.uis.edu.co, efroa@uis.edu.co

Abstract

In this paper a complete implementation and design of a fully-synthesized 32-bit
microcontroller in a 130nm CMOS technology is presented. This is the first mi-
crocontroller featuring the open source RISC-V instruction set all mounted through
AXI4-Lite and APB buses for communication process. The microcontroller con-
tains a 4kB-RAM, an SPI AXI slave interface for output verification, and an SPI
APB slave interface for checking the correct behavioral of the APB bridge. All pe-
ripherals are controlled by a RISC-V and an SPI AXI master interface that is used
for programming the device and checking the data flowing through all the slaves. A
total power density is reported as 167µW/MHz and the area for this RISC-V micro-
controller has a reduced footprint of 798µm×484µm.

1 Introduction
Many commercial microcontrollers have been built to suit different requirements fea-
turing many private-and-licensed instruction sets. Licensed instruction sets and micro-
processor cores restrict the process of modifying the core for different purposes such as
improving performance and adapting it to specific applications.

RISC-V is a new open ISA aimed to support architecture research and education [1].
It is fully available to the public and can replace ARM microprocessors because is com-
parable fast and has a small footprint size. RISC-V features an instruction set easy to
migrate empowering a developer community to work on this new architecture. Recently,
in [2] and [3] processors are reported capable of running linux using a RISC-V instruction
set. However, up to date there has not been any reported work with of a small footprint
RISC-V core for low-power microcontroller applications.

We are presenting the implementation of the first reported 32-bit RISC-V based mi-
crocontroller (mRISC-V). Our implementation and design is equivalent to commercial

1

microcontrollers implemented with an ARM-M0 core. Features of this microcontroller
are: AXI4-Lite and APB buses for interfacing communication between the core and all
the peripherals attached to it, a 4kB-RAM, Serial Peripheral Interface (SPI) slaves for
output, a GPIO module, a SAR Analog-to-Digital converter and a Digital-to-Analog con-
verter. The circuit was designed using 130nm CMOS technology and tested using an
efficient test algorithm in bus and using RISC-V tool-chain. In addition, a master SPI has
been implemented in order to explore all the status of the peripherals while the micropro-
cessor is still executing its program.

2 RISC-V
RISC-V is a new open instruction set architecture (ISA) designed by the Berkeley Archi-
tecture Group with the aim to support architecture research and education [1]. RISC-V
is fully available to public and has advantages such as a smaller footprint size, support
for highly-parallel multi-core or many-core implementations [2], variable-length instruc-
tions to support an optional dense instruction, and energy efficient. Moreover, RISC-V
presents improvements in different characteristics over another open ISAs as shown the
comparison in the Table 1.

Table 1: Comparison of the Open ISA
PARAMETER/ISA SPARCV8 OpenRISC RISC-V

BASE+EXT NO NO YES
Compact Code NO NO YES

Quad FP NO NO YES
32-bit YES YES YES
64-bit NO YES YES

128-bit NO NO YES
GCC YES YES YES

LLVM YES YES YES
32-bit YES YES YES

R-type

I-type

S-type

U-type

OPCODE

OPCODE

OPCODE

OPCODE

rd

rd

rd

imm[4:0]

funct3

funct3

funct3

imm[31:12]

rs1

rs1

rs1

rs2

rs2imm[11:5]

imm[11:0]

067111214151920242531 bit

funct7

Figure 1: RISC-V base instruction formats

The base ISA is clean and suitable for direct hardware implementation, the instruc-
tions of RISC-V are similar to other RISC instructions set such as OpenRISC. The Fig. 1

2

R-type S-type I-type U-type

* Aritmetic
instructions

*AMO instructions
*Computational

Instructions
REG-REG

* Store
Instructions

*System
instructions

*Load instructions
*Computational

Instructions
REG-immediate

* JAL
Instructions
* Immediate
Instructions

RISC-V
INSTRUCTIONS

Figure 2: RISC-V Instructions

shows the four core instruction formats (R,I,S,U). R-type format is used for several arith-
metic instructions with one or two source operands and for the atomic memory operation
(AMO) instructions that perform read-modify-write operations for multiprocessor syn-
chronization. In addition, R-type is used for computational instruction register-register.
I-type format is used for system instructions to access system functionality that might
require privileged access and computational instructions register-immediate. Load and
store instructions transfer a value between the registers and memory. Loads are encoded
in the I-type format and stores are S-type. U-type format is used for JAL instructions or
immediate instructions as LUI (load upper immediate) and AUIPC (add upper immediate
to pc), see Fig. 2. All formats are fixed 32-bit in length, and keeps the source (rs1 and
rs2) and destination (rd) registers at the same position to simply decoding, for all formats
the bit 31 is the sign bit.

RISC-V architecture contains an Arithmetic Logic Unit (ALU), registers, past mem-
ory and future memory, an interrupt system, an instruction decoder and a Pico co-processor
interface (PCPI) which is connected to a co-processor to do multiplications. We have im-
plemented a reduced instruction set microcontroller mRISC-V using a smaller core to
promote research and development of the Internet of things.

3 mRISC-V ARCHITECTURE
Implementation of an efficient microcontroller requires a reliable and fast communication
between masters and slaves blocks in the microcontroller. Nowadays, many bus-based
communication architecture standards are found. In this work we are using the AMBA
and APB protocols such that we can compare with microcontrollers based on ARM-M0
cores. The architecture of the mRISC-V is shown in Fig. 3.

Slave interfaces are interconnected to the AXI4-Lite or to the APB Bridge. Each
interface is different but with several similarities for each protocol. Buses are composed
of state machines, registers, multiplexers and Hi-Z buffers. Moreover, the master interface

3

Multiplier

ALU Registers
Instructin
Decoder

RISC-VPCPI

IRQ Admin

M
e
m

o
ry

C
o
n
tro

lle
r

SPI
Master

AXI4-Lite

APB Bridge

ADC
10-bit

10 MHz

SPI
Slave

SPI
Slave

RAM
4 KB

GPIO
8 pins

DAC
12-bit

Figure 3: mRISC-V block diagram.

is implemented with a Serial Peripheral Interface (SPI). Following sections describe all
these interfaces.

3.1 AXI4-Lite
The AMBA AXI4 is an ultra-high performance protocol bus standard [4] developed by
ARM for easy application in small scale SoCs. AXI4 has different forms to be imple-
mented and this work uses the AXI4-Lite protocol, which has two data channels of 32-bit
and other necessary control signals for communication between Masters (SPI M, RISC-
V) and slaves (RAM, SPI S, APB) [5].

3.2 SPI Master
SPI is used as a master AXI4-Lite interface for controlling all slaves attached to the core.
This interface has a 66-bit data instruction: 32-bit for data, 32-bit for address and 2-bit to
define an action like write, read; to put the core reset; and check the last request.

4

3.3 APB
Several types of protocols are available in SoC, which require a bridge to safely pass the
information from one type of protocol to another without data loss. The Advance Periph-
eral Bus (APB) is part of the Advaced Microcontroller Bus Architecture (AMBA) proto-
col family. This protocol determines a low-cost interface that is optimized for minimal
power expending and decreased interface complexity used to connect to low-bandwidth
peripherals that do not demand the high performance of the AXI protocol.

The signal transaction between AXI master and APB slave are described by:

• AMBA AXI-Lite signals as described in the AMBA AXI-Lite 4.0 protocol specifi-
cation. [5]

• AMBA APB signals as described in the AMBA APB 4.0 protocol specification. [6]

The APB bridge provides an interface between the high-speed AXI domain and the
low-power APB domain. It’s seen as slave on AXI but as a master on APB. To run a
process of writing or reading transfers on the AXI bus are converted into corresponding
transfers on the APB. Since its execution is not pipelined, wait states and response signals
of protocol are added during transfers to and from the APB when the AXI must wait for
the APB protocol.

The APB bridge is responsible for converting the APB signals corresponding AXI
signals. The APB bridge acts as master in APB module and all transactions initiated by
the AXI masters. Whenever AXI master tries to access a slave, it requires completing the
handshaking process with the corresponding slave. When the AXI master wants to start
a process of writing and reading simultaneously in any of the peripherals, reading takes
priority and the writing process can take place after completion of the read transaction.

4 PERIPHERALS

4.1 GPIO
General-purpose input/output (GPIO) are crucial for a variety of microcontroller applica-
tions and these pins are used as digital inputs or outputs. Figure 4 shows the block diagram
of communication between the core and the pad, which perform the connection of the
GPIO with the APB bridge protocol. This block is controlled by a digital control system
designed for speed and low power consumption according to the APB Bridge protocol.
The implemented GPIO have slew-rate control capability for output and Schmit-Trigger
windows for input. The 8-port GPIO is able to drive up to 25mA per output pin.

4.2 ANALOG AND DIGITAL CONVERTERS
In order to perform analog and digital conversions, mRISC-V incorporates an analog-
to-digital converter (ADC) and a digital-to-analog converter (DAC) which communicate
with APB Bridge through the interface shown in Fig. 3. The ADC type that is imple-
mented is a successive approximation register (SAR) and its structure is shown in Fig. 5.
The SAR ADC implemented operates at a maximum sampling frequency of 10MHz and

5

 APB
Bridge

2.5V

1.2V

Figure 4: GPIO block diagram.

a resolution of 10-bit for a differential input.

CAPACITIVE
DAC_1

SAR REGISTER

VIN_N_ANALOG

VIN_P_ANALOG

BOOSTTRAPED

BOOSTTRAPED

DIGITAL DATA OUT

CAPACITIVE
DAC_2

Figure 5: SAR ADC block diagram.

On the other hand, the DAC implemented is based in a R2R structure with 12-bit
resolution, rail to rail output voltage and a typical settling time of 100ns.

5 RESULTS
Verification of peripherals has been performed from the perspective of the RISC-V core
and the SPI master. The SPI master is used to program the memory and also can read
or write on any peripheral attached to the AXI-4 bus and the APB bridge. Fig. 6 shows
the used initialization and verification tasks where signal generation and communications
transactions are shown in Fig. 7.

6

A methodology is described in verilog which perfom an automatic verification of ran-
dom handshake generation in the AXI master 1 and AXI master 2. As the first step, the
AXI master choose a slave, then the transaction type is selected (read or write) depend-
ing of type transaction that can support the slave. The data is sent to the bus and the
AXI scoreboard registers of the data flow between the master and the slave. The data is
kept and compared to verify that the transaction is correct. In case of a violation in the
protocol, the verification process is paused and the error is reported to the prompt.

Programming mRISC-V through SPI

Execute mRISC-V and wait "OK"

Test DAC from SPI

Test ADC from SPI

Test GPIO from SPI

mRISC-V

async

execution

Figure 6: Initialization and testing setup for mRISC-V.

AXI
scoreboard

AXI master 2

AXI master 1

AXI master
trasaction

AXI master
trasaction

Write read/
get data

Write read/
get data

RAM

SPI slave

SPI slave

A
P
BA

X
I4

-L
IT

E

GPIO

ADC

DAC

Figure 7: Testbench architecture.

Microcontroller is fully synthesized in 130nm CMOS technology. Synthesis results
are shown in the Table 2 for each peripherals and for whole system with the AXI-APB
implementation. The 4kB RAM module occupies almost the same area of the sum of the
core and peripherals. The highest power consumption density comes from the RISV-V
processor. Maximum operation frequency is determined by the RAM which operates at
100MHz despite the core been able to operate at higher frequency. Some cores, especially
the AXI-4 interconnect, uses Hi-Z addressing instead of multiplexer to optimize area. The
sum of the peripherals implemented on APB (ADC, DAC and GPIO) are on the APB TOP
implementation.

7

Table 2: Power, timing and area breakout of the mRISC-V.
Core Power Time Slack Area

[nW/MHz] [ps @ 100MHz] [µm2]
AXI-4 interconnect 5284.66 6093 11830

mRISC-V 96952.67 2143 120776
SPI AXI master 13532.69 3998 19627

AXI-RAM 2617.00 3602 2580
RAM 18997.73 N/A 168708

APB TOP 11703.14 3664 23794
SPI AXI slave 2176.93 8085 1899

All 166841.47 1185 349233

The final layout is exposed in the Fig. 8. Each instance is highlighted to expose the
area breakout. As expected, the RAM block occupies a significant area with a footprint
close to 50% of the whole chip. A final area of 798µm×484µm and an energy consump-
tion of about 167µW/Hz shows the feasibility of using the proposed mRISC-V -with
additional sensor circuitry- in and low-cost and low-power applications.

Figure 8: Final layout for AXI-APB implementation. Area:798µm×484µm

6 SUMMARY
A fully-synthesized microncontroller based on RISC-V architecture on 130nm CMOS
technology has been presented. Many peripherals are included using a proposed method-
ology to verify the correct operation. The proposed architecture shows the interconnection
between the RISC-V, the SPI AXI master, and all the peripherals attached to the AXI4-
Lite and APB buses, explaining details of the implementation.

The proposed mRISC-V is the first designed RISC-V microcontroller with enough
peripheral to perform common microcontroller tasks. Power and area results show that
a reduced RISC-V architecture can be used to replace ARM-MO based microcontrollers

8

with similar peformance. Considering the advantage of the growing RISC-V community
and the existing tool-chain and software around this new instruction set, the mRISC-V
paves the way of future implementations for specific and general applications in the world
of IoT with open source devices.

References
[1] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović, “The RISC-V instruction

set manual, volume i: User-level ISA, version 2.0,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2014-54, May 2014.

[2] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanovic, and K. Asanovic,
“A 45nm 1.3GHz 16.7 double-precision GFLOPS/W RISC-V processor with vec-
tor accelerators,” in European Solid State Circuits Conference (ESSCIRC), ESSCIRC
2014 - 40th, Sept 2014, pp. 199–202.

[3] B. Zimmer, Y. Lee, A. Puggelli, J. Kwak, R. Jevtic, B. Keller, S. Bailey, M. Blago-
jevic, P.-F. Chiu, H.-P. Le, P.-H. Chen, N. Sutardja, R. Avizienis, A. Waterman,
B. Richards, P. Flatresse, E. Alon, K. Asanovic, and B. Nikolic, “A RISC-V vector
processor with tightly-integrated switched-capacitor DC-DC converters in 28nm FD-
SOI, year=2015, pages=C316-C317, month=June,,” in VLSI Circuits (VLSI Circuits),
2015 Symposium on.

9

[4] S. Pradeep and C. Laxmi, “Design and verification environment for amba axi protocol
for soc integration.”

[5] ARM, “AMBA AXI and ACE protocol specification,” 2011, pp. 1–121.

[6] C. Ma, Z. Liu, and X. Ma, “Design and implementation of apb bridge based on amba
4.0,” in Consumer Electronics, Communications and Networks (CECNet), 2011 In-
ternational Conference on, April 2011, pp. 193–196.

10

	Introduction
	RISC-V
	mRISC-V ARCHITECTURE
	AXI4-Lite
	SPI Master
	APB

	PERIPHERALS
	GPIO
	ANALOG AND DIGITAL CONVERTERS

	RESULTS
	SUMMARY

