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Chapter 1

Introduction

SiFive’s E3 Coreplex series is a family of RISC-V microcontrollers used on SiFive Freedom SoC
platforms and available separately as IP blocks. All SiFive E3 Coreplexes are guaranteed to be
compatible with all applicable RISC-V standards, and this document should be read together with
the official RISC-V user-level and privileged-architecture standard documents.

P RISC

1.1 E31 Coreplex

The E31 Coreplex is the first member of the E3 Coreplex series and is shown in Figure The
E31 is designed for low resource utilization and is ideal for low-power ASIC microcontrollers and
FPGA soft-core implementations.

The E31 Coreplex includes an E31 32-bit RISC-V microcontroller core, which can be configured
with a wide variety of instruction and data memory subsystems including caches, a local interrupt
controller, a platform-level interrupt controller, an autonomous DMA unit, a debug unit with JTAG
interface, an outgoing external TileLink platform bus, and an incoming TileLink master port.

1.2 E31 RISC-V Core

The E31 Coreplex is based around the E31 32-bit RISC-V core, which is a high-performance
single-issue in-order execution pipeline, with a peak sustainable execution rate of one instruction
per clock cycle. The E31 can be configured to support either of the RISC-V standard RV32I or
RV32E base architectures with optional MAFDCN ISA extensions, and a machine-mode privileged
architecture with optional user-mode support.

1.3 Memory System

The E31 Coreplex memory system supports a range of options. Instructions can be fetched di-
rectly from on-Coreplex dedicated mask ROM or instruction SRAM, and/or instructions can be
cached in an optional configurable instruction cache. On-Coreplex data SRAM can be provided
and/or data accesses can be cached in a configurable data cache. Both instruction and data
accesses can be made to uncached memory, and all caches support hardware cache flushing.
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Figure 1.1: E31 Coreplex Block Diagram.
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1.4 Platform-Level Interrupt Controller

The E31 Coreplex includes a RISC-V standard platform-level interrupt controller (PLIC) that can
be configured to support up to 32 inputs with up to 31 programmable priority levels.

1.5 Fast Local Interrupts

The E31 supports the standard local timer and software interrupts, and can be configured to
support an additional 20 fast local interrupts with fixed priority levels.

1.6 Debug Support

The E31 Coreplex provides full external debugger support over an industry-standard JTAG port,
including up to 8 programmable breakpoints supporting programmable address ranges. As an
option, the debug module bus can be exposed as an external interface to support other debug
transport mechanisms.

1.7 External TileLink Interfaces

The external TileLink platform bus connects to off-Coreplex memory and peripherals, and supports
burst accesses to speed cache fills and DMA transfers. The external TileLink master port allows an
external agent to access on-Coreplex devices or the platform bus, and also maintains coherence
with the data cache.
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Chapter 2

Terminology

CLINT Coreplex-Local INTerrupts, which includes software interrupts, local timer
interrupts, and other interrupts routed directly to a core.

hart HARdware Thread

JTAG Joint Test Action Group

PLIC Platform-Level Interrupt Controller. The global interrupt controller in a RISC-
V system.

TileLink A free and open interconnect standard originally developed at UC Berkeley.

WARL Write-Any Read-Legal field. A register field that can be written with any
value, but returns only supported values when read.

WIRI Writes-Ignored, Reads-Ignore field. A read-only register field that may con-
tain unknown information. Writes to the field are ignored, and reads should
ignore the value returned.

WLRL Write-Legal, Read-Legal field. A register field that should only be written
with legal values and that only returns legal value if last written with a legal
value.

WPRI Writes-Preserve Reads-Ignore field. A register field that may contain un-
known information. Reads should ignore the value returned, but writes to
the whole register should preserve the original value.
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Chapter 3

E31 RISC-V Processor Core

This chapter describes the E31 32-bit RISC-V processor core. The E31 core comprises an in-
struction memory system, an instruction fetch unit, an execution pipeline, a data memory system,
and support for custom local interrupts. The E31 core is highly configurable, and the sections
below describe the full space of options. However, not all configuration options will be available in
all platforms and Coreplexes.

3.1 E31 Instruction Memory System

The instruction memory system may include an instruction ROM, a dedicated instruction RAM,
and/or an instruction cache. The access latency of all blocks in the instruction memory system is
one clock cycle.

The instruction cache is configurable, supporting sizes between 256 B and 32 KiB, direct-mapping
or set-associativity, and line sizes of 16 B, 32 B, or 64 B. The instruction cache is not kept coherent
with the rest of the platform memory system. Writes to instruction memory must be synchronized
with the instruction fetch stream by executing a FENCE.I instruction.

The instruction cache will not cache instructions from an instruction scratchpad SRAM or mask
ROM placed in the instruction pipeline, but can cache instructions held in other memories in the
system.

3.2 E31 Instruction Fetch Unit

The E31 instruction fetch unit may contain an optional branch predictor. The optional branch
predictor comprises a branch target buffer (BTB), which predicts the target of taken branches and
jumps; a branch history table (BHT), which predicts the direction of conditional branches; and
a return-address stack (RAS), which predicts the target of procedure returns. The BTB may be
configured to hold between 2 and 64 entries. The RAS may be configured to hold between 2 and
16 entries. The BHT uses a gshare prediction scheme with between 6 and 10 bits of global history
to access an array of between 64 and 1024 two-bit saturating counters. The branch predictor
has a one-cycle latency, so that correctly predicted control-flow instructions result in no penalty.
Mispredicted control-flow instructions incur a three-cycle penalty.

Configurations without the optional branch predictor statically predict that all control-flow instruc-
tions are not taken, and incur a three-cycle penalty on all taken branches and jumps.

7
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3.3 E31 Execution Pipeline

The E31 execution unit is a single-issue, in-order pipeline. The pipeline comprises five stages:
instruction fetch, instruction decode and register fetch, execute, data memory access, and register
writeback.

The pipeline has a peak execution rate of one instruction per clock cycle, and is fully bypassed so
that most instructions have a one-cycle result latency. There are several exceptions:

¢ LW has a two-cycle result latency, assuming a cache hit.
e LH, LHU, LB, and LBU have a three-cycle result latency, assuming a cache hit.

¢ MUL, MULH, MULHU, MULHSU, DIV, DIVU, REM, and REMU have between a 2-cycle and
34-cycle result latency, depending on the pipeline configuration and operand values.

e CSR reads have a three-cycle result latency.

The pipeline only interlocks on read-after-write and write-after-write hazards, so instructions may
be scheduled to avoid stalls.

Two multiplier options are available: a fully pipelined multiplier with a two-cycle result latency, or
an iterative multiplier of configurable latency. The iterative divider has a configurable latency of
between three and 34 cycles and an early-out option.

Branch and jump instructions transfer control from the memory access pipeline stage. Correctly-
predicted branches and jumps incur no penalty, whereas mispredicted branches and jumps incur
a three-cycle penalty.

Most CSR writes result in a pipeline flush, with a five-cycle penalty.

3.4 E31 Data Memory System

The E31 data memory system includes either or both of a scratchpad RAM and data cache. The
data cache is configurable, supporting sizes between 256 B and 32 KiB, direct-mapping or set-
associativity, and line sizes of 16 B, 32B, or 64 B. The access latency is two clock cycles for full
words and three clock cycles for smaller quantities. Misaligned accesses are not supported in
hardware and result in a trap to allow software emulation.

Stores are pipelined and commit on cycles where the data memory system is otherwise idle. Loads
to addresses currently in the store pipeline result in a five-cycle penalty.

3.5 E31 RV32E Option

The E31 core can optionally be configured with the RV32E base ISA that has only 16 integer
registers (including the x0 zero register).

3.6 E31 Atomic Memory Operations

The E31 core optionally supports the RISC-V standard atomic A extensions.
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3.7 E31 Floating-Point Unit (FPU)

The E31 can optionally be configured with an IEEE-compliant floating-point unit (FPU) to provide
hardware support for the RISC-V F and D extensions. The FPU can be configured to support only
the single-precision F extension, or both F and the double-precision D extension. The FPU pro-
vides a fully-pipelined fused multiply-add pipeline with full hardware support for IEEE subnormal
numbers and special values. Various performance levels of hardware floating-point divide/square
unit can be included.

3.8 E31 Custom Local Interrupts

The E31 core can support up to 20 additional local interrupt sources that are routed to the upper
mip bits in the mstatus register.

3.9 E31 User-Mode

The E31 can be augmented with RISC-V user-mode support, a memory protection unit, and user-
level interrupts, to support secure processing.
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Chapter 4

Memory Map

The overall memory map of the E3 Coreplex is shown in Table [4.1]

Base

Top

Description

0x0000_0000
0x0000_0100
0x0000.0104
0x0000_0108
0x0000_010C
0x0000_0110
0x0000_0400
0x0000_0800

0x0000_O0FF

0x0000_03FF
0x0000_07FF
0x0000_OFFF

Reserved

Clear debug interrupt to component
Set debug interrupt to component
Clear halt notification from component
Set halt notification from component
Reserved

Debug RAM (< 1KiB)

Debug ROM (< 2KiB)

Debug (4 KiB)

0x0000-1000
0x0000.1004
0x0000-1008
0x0000-100C
0x0000.1010

0x0001_FFFF

Reset

Reserved

Reserved

Configuration string address
User ROM

Mask ROM (<124 KiB)

0x0002_0000

0x0003_FFFF

On-chip OTP read port

OTP read (<128 KiB)

0x0004_0000

OxOOFF_FFFF

On-chip eFlash read port

eFlash read (<16 MiB)

0x0100_0000

OxO1FF_FFFF

Scratchpad RAMs

Scratchpads (<16 MiB)

0x0200_0000

0x0200_FFFF

0x0201_0000

OxOBFF_FFFF

Coreplex-Local
(<64 KiB)
Additional Devices (<160 MiB)

Interrupts  (CLINT)

0x0C00_0000

OxOFFF_FFFF

Platform-Level Interrupt Control (PLIC)
(64 MiB)

On-Coreplex Devices (224 MiB)

0x1000_0000

0x1000_7TFFF

Always-On (AON) (<32 KiB)

0x1000_8000

0x1000_FFFF

0x1001_0000

Ox1FFF_FFFF

Power, Reset, Clock, Interrupts (PRCI)
(<32KiB)
Off-Coreplex Devices (<256 MiB)

0x2000_0000

Ox7FFF_FFFF

I/0, Flash, RAM (1.5 GiB)

Off-Coreplex 1/0 (1.75 GiB)

0x8000_0000

OxFFFF_FFFF

RAM

Main Memory (2 GiB)

Table 4.1: E3 Coreplex Series Physical Memory Map.
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A Coreplex system with only scratchpad RAM places the RAM starting at 0x8000_0000. Instruction
scratchpads are followed immediately by data scratchpads in the memory map. If the Coreplex is
in a system with large external memory, this is placed starting at 0x8000_0000. A Coreplex system
with both large external memory and scratchpads, places the scratchpads starting at 0x0100_0000.
This scheme ensures there is always main memory at 0x8000_0000, while not wasting any of the
large external memory.

The 32-bit physical memory map can support 3.5GiB of RAM, between 0x2000.0000—
OxFFFF_FFFF, while leaving almost 256 MiB free for I/O devices.



Chapter 5

Platform-Level Interrupt Controller
(PLIC)

This chapter describes the operation of the platform-level interrupt controller (PLIC) on SiFive
systems. The SiFive PLIC complies with the RISC-V Privileged Architecture specification, and
can support a maximum of 1023 external interrupt sources targeting up to 15,872 hart contexts.

5.1 Memory Map

The memory map for the SiFive PLIC control registers is shown in Table [5.1] The PLIC memory
map has been designed to only require naturally aligned 32-bit memory accesses.

5.2 Interrupt Sources

SiFive systems can contain both local interrupt sources wired directly to the hart contexts and
global interrupt sources routed via the PLIC. Interrupt sources can include custom coprocessors
and accelerators as well as I/O devices.

5.3 Interrupt Source Priorities

Each external interrupt source can be assigned a priority by writing to its 32-bit memory-mapped
priority register. The number and value of supported priority levels can vary by implementa-
tion, with the simplest implementations having all devices hardwired at priority 1, in which case,
interrupts with the lowest ID have the highest effective priority. The priority registers are all WARL.

5.4 Interrupt Pending Bits

The current status of the interrupt source pending bits in the PLIC core can be read from the
pending array, organized as 32 words of 32 bits. The pending bit for interrupt ID N is stored in bit
(N mod 32) of word (/N/32). Bit 0 of word 0, which represents the non-existent interrupt source 0,
is always hardwired to zero.

The pending bits are read-only. A pending bit in the PLIC core can be cleared by setting enable
bits to only enable the desired interrupt, then performing a claim. A pending bit can be set by
instructing the associated gateway to send an interrupt service request.

13
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Address

Description

0x0C00_0000
0x0C00_0004
0x0C00_0008

0x0COO0_OFFC

Reserved
source 1 priority
source 2 priority

source 1023 priority

0x0C00-1000

0x0C00_107C
0x0C00-1800

0xO0COO_1FFF

Start of pending array
(read-only)
End of pending array

Reserved

0x0C00-2000
0x0C00_2080

0xO0C1E_FF80
0x0C1F_0000

0xOC1F_FFFC

target 0 enables
target 1 enables

target 15871 enables

Reserved

0x0C20_0000
0x0C20.0004
0x0C20-1000
0x0C20.1004

O0xOFFF_FO000
OxOFFF_F004

target O priority threshold
target 0 claim/complete
target 1 priority threshold
target 1 claim/complete

target 15871 priority threshold
target 15871 claim/complete

Table 5.1: SiFive PLIC Register Map. Only naturally aligned 32-bit memory accesses are sup-

ported.
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5.5 Target Interrupt Enables

For each interrupt target, each device’s interrupt can be enabled by setting the corresponding bit
in that target’s enables registers. The enables for a target are accessed as a contiguous array of
32x32-bit words, packed the same way as the pending bits. For each target, bit 0 of enable word
0 represents the non-existent interrupt ID 0 and is hardwired to 0. Unused interrupt IDs are also
hardwired to zero. The enables arrays for different targets are packed contiguously in the address
space.

Only 32-bit word accesses are supported by the enables array in SiFive RV32 systems.

Implementations can trap on accesses to enables for non-existent targets, but must allow access
to the full enables array for any extant target, treating all non-existent interrupt source’s enables
as hardwired to zero.

5.6 Target Priority Thresholds

The threshold for a pending interrupt priority that can interrupt each target can be set in the target’s
threshold register. The threshold is a WARL field, where different implementations can support
different numbers of thresholds. The simplest implementation has a threshold hardwired to zero.

5.7 Target Claim

Each target can perform a claim by reading the claim/complete register, which returns the ID
of the highest priority pending interrupt or zero if there is no pending interrupt for the target. A
successful claim will also atomically clear the corresponding pending bit on the interrupt source.

A target can perform a claim at any time, even if the EIP is not set.
The claim operation is not affected by the setting of the target’s priority threshold register.

5.8 Target Completion

A target signals it has completed running a handler by writing the interrupt ID it received from
the claim to the claim/complete register. This is routed to the corresponding interrupt gateway,
which can now send another interrupt request to the PLIC. The PLIC does not check whether the
completion ID is the same as the last claim ID for that target. If the completion ID does not match
an interrupt source that is currently enabled for the target, the completion is silently ignored.

5.9 Hart Contexts

SiFive cores always support a machine-mode context for each hart. For machine-mode hart con-
texts, interrupts generated by the PLIC appear on meip in the mip register. SiFive cores can op-
tionally support user-level interrupts with a user-mode context for each hart. If external interrupts
are delegated to the user-mode hart context (by setting the appropriate bits in the machine-mode
mideleg register), then the PLIC interrupts appear on ueip in the uip register. The PLIC interrupts
for the user-mode hart context always appear on the ueip bit in the mip register, regardless of
delegation setting.

Interrupt targets are mapped to harts sequentially, with interrupt targets being added for each
hart's M-mode, H-mode, S-mode, and U-mode contexts sequentially in that order. For example,
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if the system has one hart with M-mode and U-mode, and two harts with M-mode, S-mode, and
U-mode, the mappings are as shown in Table[5.2]

Target | Hart Mode
0 0 M
1 0 U
2 1 M
3 1 S
4 1 U
5 2 M
6 2 S
7 2 U

Table 5.2: Example mapping of interrupt targets to hart contexts in a system with three harts, of
which the first supports only M-mode and U-mode, while the other two support M-mode, S-mode,
and U-mode.



Chapter 6

Coreplex-Local Interrupts (CLINT)

The CLINT block holds memory-mapped control and status registers associated with local inter-
rupts for a Coreplex.

6.1 CLINT Address Space Usage
Table [6.1] shows the memory map for CLINT on SiFive systems.

Because CLINT is only visible to machine-mode software, the memory address space can be
densely packed. To simplify interconnect implementation, CLINT interfaces are designed to only
require 32-bit or larger accesses. Hardware modules might expose other memory-mapped in-
terfaces suitable for use at lower privilege levels, but these should be mapped to the 1/O memory
region in a way that can be easily protected from each other using either physical or virtual memory
protections.

6.2 MSIP Registers

Machine-mode software interrupts are generated by writing to a per-hart memory-mapped control
register. The msip registers are 32-bit wide WARL registers, where the LSB is reflected in the
msip bit of the associated hart’s mip register. Other bits in the msip registers are hardwired to
zero. The mapping supports up to 4095 machine-mode harts.

6.3 Timer Registers

Machine-mode timer interrupts are generated by a real-time counter and a per-hart comparator.
The mtime register is a 64-bit read-only register that contains the current value of the real-time
counter. Each mtimecmp register holds its hart’s time comparator. A timer interrupt is pending
whenever mtime is greater than or equal to the value in a hart’s mtimecmp register. The timer
interrupt is reflected in the mtip bit of the associated hart’s mip register.

17
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Address

Description

0x0200_0000
0x0200_0004

0x0200_3FF8

msip for hart O
msip for hart 1

msip for hart 4094

MSIP Registers (16 KiB)

0x0200-4000
0x0200_4008

0x0200_BFFO
0x0200_BFF8

mtimecmp for hart 0
mtimecmp for hart 1

mtimecmp For hart 4094
mtime

Timer Registers (32 KiB)

0x0200_C000

0x0200_EFFC

Reserved

Table 6.1: SiFive CLINT Memory Map.




Chapter 7

JTAG Port

SiFive systems use a single external industry-standard 1149.1 JTAG interface to test and debug
the system. The JTAG interface can be directly connected off-chip in a single-chip microcontroller,
or can be an embedded JTAG controller for a Coreplex designed to be included in a larger SoC.

7.1 JTAG Pinout

SiFive uses the industry-standard JTAG interface which includes the four standard signals, TCK,
TMS, TDI, and TDO, and optionally also the TRST connection.

On-chip JTAG connections must be driven (no pullups), with a normal two-state driver for TDO
under the expectation that on-chip mux logic will be used to select between alternate on-chip
JTAG controllers’ TDO outputs.

7.2 JTAG TAPC State Machine
The JTAG controller includes the standard TAPC state machine shown in Figure[7.1]

7.3 Resetting JTAG logic

The JTAG logic can be asynchrously reset by pulling TRST low if TRST is available. The TRST
signal should be deasserted cleanly while TMS is held high before the first active TCK edge. If
TRST is not available, the JTAG logic can be reset by holding TMS high and providing five rising
edges on TCK.

Only JTAG logic is reset by this action.

Signal Name Description Direction | Off-Chip On-Chip
TRST (optional) | Active-low Reset | Input Must connect | Must connect
TCK Test Clock Input Weak pull-up | Must connect
TMS Test Mode Select | Input Weak pull-up | Must connect
TDI Test Data Input Input Weak pull-up | Must connect
TDO Test Data Output | Output Tri-state Driven

Table 7.1: SiFive standard JTAG interface for off-chip external TAPC and on-chip embedded TAPC.

19
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TRST=0
1 | Test-Logic-Reset )=
0
0 Run-Test-Idle ! ‘—> Select DR- Scan Select IR- Scan
A

Capture -DR Capture-IR

0

]
Update-DR
1

:
0 1 0
]

Figure 7.1: JTAG TAPC state machine. The state machine is clocked with TCK. All transitions are
labelled with the value on TMS, except for the arc showing asynchronous reset when TRST=0.

7.4 JTAG Clocking

The JTAG logic always operates in its own clock domain clocked by TCK. The JTAG logic is fully
static and has no minimum clock frequency. The maximum TCK frequency is part-specific.

7.5 JTAG Standard Instructions
BYPASS and IDCODE are provided. The SiFive JTAG manufacturer’s ID is 0x489.

7.6 JTAG Debug Commands

The JTAG DEBUG instruction gives access to the SiFive debug module by connecting the debug
scan register inbetween TDI and TDO.

The debug scan register includes a 2-bit opcode field, a 5-bit debug module address field, and
a 34-bit data field to allow various memory-mapped read/write operations to be specified with a
single scan of the debug scan register.

The Debug Module runs on a different clock than the JTAG logic, so the interface between the JTAG
debug scan register and the Debug Module includes an asynchronous clock-domain crossing.



Chapter 8

Debug

This chapter describes the operation of SiFive trace and debug hardware, which follows the stan-
dard RISC-V debug spec. Currently only interactive debug and hardware breakpoints are sup-
ported.

8.1 Debug CSRs

This section describes the per-hart trace and debug registers (TDRs), which are mapped into the
CSR space as follows:

CSR Number | Name Description Allowed Access Modes
0x7AO | tdrselect | Trace and debug register select D, M
0x7A1 | tdrdatal First field of selected TDR D,M
0x7A2 | tdrdata2 | Second field of selected TDR D, M
0x7A3 | tdrdata3 | Third field of selected TDR D,M
0x7BO | dcsr Debug control and status register | D
0x7B1 | dpc Debug PC D
0x7B2 | dscratch | Debug scratch register D

The dcsr, dpc, and dscratch registers are only accessible in debug mode, while the tdrselect
and tdrdatal1-3 registers are accessible from either debug mode or machine mode.

8.1.1 Trace and Debug Register Select (tdrselect)

To support a large and variable number of TDRs for tracing and breakpoints, they are ac-
cessed through one level of indirection where the tdrselect register selects which bank of three
tdrdatal—3 registers are accessed via the other three addresses.

The tdrselect register has the format shown below:

The MSB of tdrselect selects between debug mode (tdrmode=0) and machine mode
(tdrmode=1) views of the registers, where only debug mode code can access the debug mode
view of the TDRs. Any attempt to read/write the tdrdatal-3 registers in machine mode when
tdrmode=0 raises an illegal instruction exception.

21
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XLEN-1  XLEN-2 0
l tdrmode l tdrindex (WARL) ‘
1 XLEN-1

Figure 8.1: Layout of tdrselect register.

The polarity of tdrmode was chosen such that debug mode needs only a single csrrwi instruc-
tion to write tdrselect in most cases.

The tdrindex field is a WARL field that will not hold indices of unimplemented TDRs. Even if
tdrindex can hold a TDR index, it does not guarantee the TDR exists. The tdrtype field of
tdrdatal must be inspected to determine whether the TDR exists.

8.1.2 Test and Debug Data Registers (tdrdatai—3)

The tdrdata1-3 registers are XLEN-bit read/write registers selected from a larger underlying bank
of TDR registers by the tdrselect register.

XLEN-1 XLEN-4  XLEN-5 0
tdrtype (read-only) | TDR-specific data tdrdatal
TDR-specific data tdrdata2
TDR-specific data tdrdata3

Figure 8.2: Layout of tdrdata registers.

The high nibble of tdrdatal contains a 4-bit tdrtype code that is used to identify the type of TDR
selected by tdrselect. The currently defined tdrtypes are shown below:

tdrtype | Description
0 | No such TDR register
1 | Breakpoint
>2 | Reserved

8.1.3 Debug Control and Status Register dcsr

This register gives information about debug capabilities and status. Its detailed functionality is
described in the RISC-V Debug Specification, v11.

8.1.4 Debug PC dpc

When entering Debug Mode, the current PC is copied here. When leaving debug mode, execution
resumes at this PC.

8.1.5 Debug Scratch dscratch

Register reserved for use by Debug ROM in order to save registers needed by the code in Debug
ROM.
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8.2 Breakpoints

Each implementation supports a number of hardware breakpoint registers, which can be flexibly
shared between debug mode and machine mode.

When a breakpoint register is selected with tdrselect, the other CSRs access the following infor-
mation for the selected breakpoint:

CSR Number | Name Description
0x7AO | tdrselect | Breakpoint index
0x7A1 | bpcontrol | Breakpoint control
0x7A2 | bpaddress | Breakpoint address
0x7A3 | N/A Reserved

8.2.1 Breakpoint Control Register bpcontrol

Each breakpoint control register is a read/write register laid out as follows:

XLEN-1 XLEN-4 XLEN-5 XLEN-9 XLEN-9 18 18 11 10 7 6 5 4 3 2 1 0
l tdrtype=1 ‘ bpamaskmax [4:0] ‘ Reserved (WPRI) ‘ bpaction[7:0] ‘ bpmatch[3:0] ‘ M ‘ H ‘ S ‘ U ‘ X ‘ w ‘ R ‘
4 5 XLEN-28 8 4 11 1 1 1 1 1

Figure 8.3: Breakpoint control register (bpcontrol).

The tdrtype field is a four-bit read-only field holding the value 1 to indicate this is a breakpoint
containing address match logic.

The bpaction field is an eight-bit read-write WARL field that specifies the available actions when
the address match is successful. Currently only the value 0 is defined, and this generates a
breakpoint exception.

The R/W/X bits are individual WARL fields and if set, indicate an address match should only be
successful for loads/stores/instruction fetches respectively, and all combinations of implemented
bits must be supported.

The M/H/S/U bits are individual WARL fields and if set, indicate that an address match should only
be successful in the machine/hypervisor/supervisor/user modes respectively, and all combinations
of implemented bits must be supported.

The bpmatch field is a 4-bit read-write WARL field that encodes the type of address range for
breakpoint address matching. Three different bpmatch settings are currently supported: exact,
NAPOT, and arbitrary range. A single breakpoint register supports both exact address matches
and matches with address ranges that are naturally aligned powers-of-two (NAPQOT) in size. Break-
point registers can be paired to specify arbitrary exact ranges, with the lower-numbered breakpoint
register giving the byte address at the bottom of the range and the higher-numbered breakpoint
register giving the address one byte above the breakpoint range.

NAPQOT ranges make use of low-order bits of the associated breakpoint address register to encode
the size of the range as follows:
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bpaddress | bpmatch | Match type and size

a...aaaaaa 0000 | Exact 1 byte

a...aaaaaa 0001 | Exact top of range boundary
a...aaaaa0 0010 | 2-byte NAPQOT range
a...aaaa01 0010 | 4-byte NAPOT range
a...aaal11 0010 | 8-byte NAPQOT range
a...aa0111 0010 | 16-byte NAPOT range
a...a01111 0010 | 32-byte NAPOT range
a0l...1111 0010 | 23'-byte NAPQOT range

.......... >0010 | Reserved

The bpamaskmax field is a 5-bit read-only field that specifies the largest supported NAPOT range.
The value is the logarithm base 2 of the number of bytes in the largest supported NAPOT range.
A value of 0 indicates that only exact address matches are supported (one byte range). A value
of 31 corresponds to the maximum NAPOT range, which is 23! bytes in size. The largest range is
encoded in bpaddr with the 30 least-signicant bits set to 1, bit 30 set to 0, and bit 31 holding the
only address bit considered in the address comparison.

The unary encoding of NAPOT ranges was chosen to reduce the hardware cost of storing and
generating the corresponding address mask value.

To provide breakpoints on an exact range, two neighboring breakpoints are combined as shown in
Figure [8.4] with the lowest matching address in the lower-numbered breakpoint address and the
address one byte above the last matching address in the higher-numbered breakpoint address.
The bpmatch field in the upper bpcontrol register must be set to 01, after which the values in
the upper bpcontrol register control the range match, and all values in the lower bpcontrol are
ignored for the purposes of the range match.

The bpcontrol register for breakpoint 0 has the low bit of bpmatch hardwired to zero, so it can not
be accidentally made into the top of a range.

tdrselect bpcontrol bpaddress
N | ?...77?7777777 | a...aaaaaa
N+1|0...00lushmrwx | b...bbbbbb

Figure 8.4: Creating a range breakpoint with a match on address a...aa < address < b...bb.
The value in the lower breakpoint’s bpcontrol register is a don’t care for the purposes of the match
generated by the upper breakpoint register. An independent breakpoint condition can be set in the
lower bpcontrol using the same value in the lower bpaddress register.

8.2.2 Breakpoint Address Register (bpaddress)

Each breakpoint address register is an XLEN-bit read/write register used to hold significant ad-
dress bits for address matching, and also the unary-encoded address masking information for
NAPOT ranges.
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8.2.3 Breakpoint Execution

Breakpoint traps are taken precisely. Implementations that emulate misaligned accesses in soft-
ware will generate a breakpoint trap when either half of the emulated access falls within the ad-
dress range. Implementations that support misaligned accesses in hardware must trap if any byte
of an access falls within the matching range.

Debug-mode breakpoint traps jump to the debug trap vector without altering machine-mode regis-
ters.

Machine-mode breakpoint traps jump to the exception vector with “Breakpoint” set in the mcause
register, and with badaddr holding the instruction or data address that cause the trap.

8.2.4 Sharing breakpoints between debug and machine mode

When debug mode uses a breakpoint register, it is no longer visible to machine-mode (i.e., the
tdrtype will be 0). Usually, the debugger will grab the breakpoints it needs before entering ma-
chine mode, so machine mode will operate with the remaining breakpoint registers.

8.3 Debug Memory Map

This section describes the debug module’s memory map when accessed via the regular system
interconnect. The debug module is only accessible to debug code running in debug mode on a
hart (or via a debug transport module).

8.3.1 Component Signal Registers (0x100—0x1FF)

The 8-bit address space from 0x100—0x1FF is used to access per-component single-bit registers.
This region only supports 32-bit writes.

On a 32-bit write to this region, the 32-bit data value selects a component, bits 7—3 of the address
select one out of 32 per-component single-bit registers, and bit 2 is the value to be written to that
single-bit register, as shown below.

Address Data
31 87 3 2 10 31 0
| 0x000001 [ Register [ Value | 00 | | Component \
24 5 1 2 32

This addressing scheme was adopted so that RISC-V debug ROM routines can signal that a hart
has stopped using a single store instruction to an absolute address (offset from register x0) and
one free data register, which holds the hart ID.

The set of valid component identifiers is defined by each implementation.

There are only two per-component registers specified so far, the debug interrupt signal (register 0)
and the halt notification register (register 1), resulting in the following four possible write actions.

Address Written | Action

0x100 Clear debug interrupt signal going to component
0x104 Set debug interrupt signal going to component
0x108 Clear halt notification from component

0x10C Set halt notification from component
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8.3.2 Debug RAM (0x400-0x43f)

SiFive systems provide at least the minimal required amount of Debug RAM, which is 28 bytes for
an RV32 system and 64 bytes for an RV64 system.

8.3.3 Debug ROM (0x800—0xFFF)

This ROM region holds the debug routines on SiFive systems. The actual total size may vary
between implementations.
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