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Preface

The document contains the version 1.0.0-draft of the HPDcache.

Preface to document version 1.0.0-draft

The changes in this version of the document include:

e Initial version of the L1 data cache (HPDcache) specification.
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Version 1.0.0-draft

This High-Performance, Multi-Requester, Multi-Issue, Out-of-Order, L1 Dcache (HPDcache) is the re-
sponsible for serving data accesses issued by a RISC-V core, tightly-coupled accelerators and hardware
memory prefetchers. All these "clients" are called requesters.

The HPDcache implements a hardware pipeline capable of serving one request per cycle. An arbiter
in the requesters’ interface of the HPDcache guarantees the correct behavior when there are multiple
requesters. This is illustrated in figure 1.1.

Requester Requester Requester Requester
0 2

S

2 N-1 Hardware
Fixed-Priority Arbiter N Memory

!

1 request/cycle [

Prefetcher

HPDcache
Core

Memory
Interface

Figure 1.1: High-Level View of the HPDcache Sub-System
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1.1 List of features

¢ Support for multiple outstanding requests per requester.

» Support for multiple outstanding read misses and writes to memory.

¢ Processes one request per cycle.

¢ Any given requester can access 1 to 32 bytes of a cacheline per cycle.

* Reduced energy consumption by limiting the number of RAMs consulted per request.

» Fixed priority arbiter between requesters: the requester port with the lowest index has the highest
priority.

¢ Non-allocate, write-through policy.
* Hardware write-buffer to mask the latency of write acknowledgements from the memory system.

* Internal, configurable, hardware, memory-prefetcher that supports up to 4 simultaneous prefetch-
ing streams.

¢ Compliance with RISC-V Weak Memory Ordering (RVWMO).

- For address-overlapping transactions, the cache guarantees that these are committed in the
order in which they are consumed from the requesters.

- For non-address-overlapping transactions, the cache may execute them in an out-of-order
fashion to improve performance.

¢ Support for CMOs: cache invalidation operations, and memory fences for multi-core synchronisa-
tion. Cache invalidation operations support the ones defined in the RISC-V CMO Standard.

¢ Memory-mapped CSRs for runtime configuration of the cache, status and performance monitor-
ing.

¢ Ready-Valid, 8 channels (4 request/4 response), interface to the memory. This interface, cache
memory interface (CMI), can be easily adapted to mainstream Network-on-Chip (NoC) interfaces
like AMBA AXI [1].

¢ An adapter for interfacing with AXI5 is provided.

César Fuguet Copyright © 2023 Commissariat a 'Energie Atomique et aux Energies Alternatives (CEA) 15
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Version 1.0.0-draft

1.2 Synthesis-time (static) Configuration Parameters

The HPDcache has several static configuration parameters. These parameters must be defined at com-

pilation/synthesis.

Table 1.1 summarizes the list of parameters that can be set when integrating the HPDcache. In appendix A.2,

we describe different systems where the HPDcache was integrated, and we list the parameters used in

those implementations.

Table 1.1: HPDcache synthesis-time parameters

CONF_DCACHE_PA_WIDTH

Physical address width (in bits)

CONF_DCACHE_WORD_WIDTH

Width (in bits) of a data word

CONF_DCACHE_REQ_WORDS

Number of words in the data channels from/to requesters

CONF_DCACHE_REQ_TRANS_ID_WIDTH

Width (in bits) of the transaction ID from requesters

CONF_DCACHE_REQ_SRC_ID_WIDTH

Width (in bits) of the source ID from requesters

CONF_DCACHE_SETS

Number of sets

CONF_DCACHE_WAYS

Number of ways (associativity)

CONF_DCACHE_CL_WORDS

Number of words in a cacheline

CONF_DCACHE_WBUF_DIR_ENTRIES

Number of entries in the directory of the write buffer

CONF_DCACHE_WBUF_DATA_ENTRIES

Number of entries in the data part of the write buffer

CONF_DCACHE_WBUF_WORDS

Number of data words per entry in the write buffer

CONF_DCACHE_WBUF_TIMECNT_WIDTH

Width (in bits) of the time counter in write buffer entries

CONF_DCACHE_RTAB_ENTRIES

Number of entries in the replay table

CONF_DCACHE_MSHR_SETS

Number of sets in the Miss Status Holding Register (MSHR)

CONF_DCACHE_MSHR_WAYS

Number of ways (associativity) in the MSHR

CONF_DCACHE_MEM_WORDS

Number of words in the data channels from/to the memory interface

CONF_DCACHE_MEM_ID_WIDTH

Width (in bits) of the transaction ID from the memory interface

Some parameters are not directly related with functionality (table 1.2). Instead, they allow adapting the
HPDcache to physical constraints in the target technology node. Generally, these control the mapping
to SRAM macros.. Depending on the technology, some dimensions are a more efficient than others (in
terms of area, power, and performance). These also need to be provided by the user at synthesis-time.

Table 1.2: HPDcache synthesis-time physical parameters

CONF_DCACHE_MSHR_WAYS_PER_RAM_WORD Number of ways in the same MSHR SRAM word

CONF_DCACHE_MSHR_SETS_PER_RAM

Number of sets per RAM macro in the MSHR array of the cache

CONF_DCACHE_DATA_WAYS_PER_RAM_WORD

Number of ways in the same CACHE data SRAM word

CONF_DCACHE_DATA_SETS_PER_RAM

Number of sets per RAM macro in the DATA array of the cache

CONF_DCACHE_ACCESS_WORDS

Number of words of a given SET that can be accessed simultaneously from

the CACHE data array

Several internal configuration values are computed from the above ones. Table 1.3 has a non-complete
list of these internal configuration values that may be mentioned in the remainder of this document.
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Table 1.3: HPDcache internal parameters

Width (in bits) of a cacheline
DCACHE_CL_WIDTH CONF_DCACHE_CL_WORDS x CONF_DCACHE_WORD_WIDTH

Width (in bits) of the CACHELINE index part of the address
DCACHE_NLINE_WIDTH CONF_DCACHE_PA_WIDTH - logs(DCACHE_CL_WIDTH/8)

Width (in bits) of the SET part of the address

DCACHE_SET_WIDTH logo(CONF_DCACHE_SETS)

Width (in bits) of the TAG part of the address

DCACHE_TAG_WIDTH DCACHE_NLINE WIDTH - DCACHE_SET WIDTH

Width (in bits) of an entry in the write-buffer
DCACHE_WBUF_WIDTH CONF_DCACHE_WBUF_WORDS x CONF_DCACHE_WORD_WIDTH

César Fuguet Copyright © 2023 Commissariat a 'Energie Atomique et aux Energies Alternatives (CEA) 17
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Gilobal Signals

Version 1.0.0-draft

2.1 Global Signals

Table 2.1: Global signals

Signal Source Description

CLK_I Clock source Global clock signal. The HPDcache is synchronous to the rising-edge of the clock.

RST_NI Reset source Global reset signal. Asynchronous, active LOW, reset signal.

WBUF_FLUSH_I System Force the write-buffer to send all pending writes. Active HIGH, one-cycle, pulse
signal. Synchronous to CLK_I.

WBUF_EMPTY_O System Indicates if the write-buffer is empty (there is no pending write transactions). When

this signal is set to 1, the write-buffer is empty.

20 Copyright © 2023 Commissariat a 'Energie Atomique et aux Energies Alternatives (CEA) César Fuguet
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2.2 Requesters’ Request/Response Interface

This section describes the interfaces between the requesters and the HPDcache.

All these interfaces are synchronous to the rising edge of the global clock CLK_| (section 2.1)

2.2.1 Signal Descriptions

Table 2.2: Request channel signals

Signal Source Description

DCACHE_REQ_VALID Requester Indicates that the channel is signaling a valid request. See section 2.4.1.

DCACHE_REQ_READY Cache Indicates that the cache is ready to accept a request. See section 2.4.1.

DCACHE_REQ_ADDR Requester Target physical address of the request. The address shall be aligned to
the DCACHE_REQ_SIZE field. See section 2.4.2.

DCACHE_REQ_OP Requester Indicates the type of operation to be performed. See section 2.5.1.

DCACHE_REQ_WDATA Requester Write data (little-endian). It shall be naturally aligned to the address. See

section 2.4.2.

DCACHE_REQ_BE Requester Byte-enable for write data (little-endian). It shall be naturally aligned to
the address. See section 2.4.2.

DCACHE_REQ_SIZE Requester Indicate the size of the access. The size is encoded as the power-of-two
of the number of bytes (e.g. 0 is 20 = 1,5is 25 = 32).

DCACHE_REQ_UNCACHEABLE Requester Indicates whether the access needs to be cached (unset) or not (set).
Uncacheable accesses are directly forwarded to the memory. See
section 2.5.4.

DCACHE_REQ_SID Requester The identification tag for the requester. It shall be identical to the index
of the request port binded to that requester. See section 2.5.2.

DCACHE_REQ_TID Requester The identification tag for the request. A requester can issue multiple
requests. The corresponding response from the cache will return this
TID. See section 2.5.3.

DCACHE_REQ_NEED_RSP Requester The identification tag for the request. Indicates whether the request
needs a response from the cache. When unset, the cache will not issue
aresponse for the corresponding request. See section 2.5.5.

Table 2.3: Response channel signals

Signal Source Description

DCACHE_RSP_VALID Cache Indicates that the channel is signaling a valid response.  See
section 2.4.1.

DCACHE_RSP_RDATA Cache Response read data. It shall be naturally aligned to the request address.
See section 2.4.2.

DCACHE_RSP_SID Cache The identification tag for the requester. It corresponds to the SID trans-
ferred with the request. See section 2.5.2.

DCACHE_RSP_TID Cache The identification tag for the request. It corresponds to the TID trans-
ferred with the request. See section 2.5.3.

DCACHE_RSP_ERROR Cache Indicates whether there was an error condition while processing the re-
quest. See section 2.5.6.

César Fuguet Copyright © 2023 Commissariat a 'Energie Atomique et aux Energies Alternatives (CEA) 21
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2.3 Memory Request/Response Interfaces

This section describes the interfaces between the HPDcache and the NoC/memory.

All these interfaces are synchronous to the rising edge of the global clock CLK_| (section 2.1)

2.3.1 Signal Descriptions

Table 2.4: Memory miss read request channel signals

Signal Source Description
MEM_REQ_MISS_READ_VALID Cache Indicates that the channel is signaling a valid request.
MEM_REQ_MISS_READ_READY NoC Indicates that the NoC is ready to accept a request.
MEM_REQ_MISS_READ_ADDR Cache Target physical address of the request. The address shall be aligned to
the MEM_REQ_MISS_READ_SIZE field. See section 2.4.2.
MEM_REQ_MISS_READ_LEN Cache Indicates the number of transfers in a burst minus one. In this inter-
face, for this version, this number is always 0 (one transfer). However,
bigger values may be used in the future. Thus, it should be decoded.
MEM_REQ_MISS_READ_SIZE Cache Indicate the size of the access. The size is encoded as the power-of-two
of the number of bytes. In the current design implementation, the size
value is equal to log, (DCACHE_CL_WIDTH/8). However, smaller val-
ues may be used in the future. Thus, it should be decoded.
MEM_REQ_MISS_READ_ID Cache The identification tag for the request
MEM_REQ_MISS_READ_COMMAND Cache Indicates the type of operation to be performed. This interface only
issues READ operations.
MEM_REQ_MISS_READ_ATOMIC Cache In case of atomic operations, it indicates its type. In this interface, this
signal is not used, thus its value shall be ignored.
MEM_REQ_MISS_READ_CACHEABLE Cache This is a hint for the cache hierarchy in the system. It indicates if the

request can be allocated by the cache hierarchy. That is, data can be
prefetched from memory or can be reused for multiple read transac-
tions. This bit is always set in this interface.

Table 2.5: Memory miss read response channel signals

Signal Source Description

MEM_RESP_MISS_READ_VALID NoC Indicates that the channel is signaling a valid response.

MEM_RESP_MISS_READ_READY Cache Indicates that the cache is ready to accept a response.

MEM_RESP_MISS_READ_ERROR NoC Indicates whether there was an error condition while processing the re-
quest.

MEM_RESP_MISS_READ_ID NoC The identification tag for the request. It corresponds to the ID trans-
ferred with the request. See section 2.4.2.

MEM_RESP_MISS_READ_DATA NoC Response read data. It shall be naturally aligned to the request address.
See section 2.4.2.

MEM_RESP_MISS_READ_LAST NoC Indicates the last transfer in a read response burst.

22 Copyright © 2023 Commissariat a 'Energie Atomique et aux Energies Alternatives (CEA) César Fuguet
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Memory Request/Response Interfaces

Table 2.6: Memory write-buffer write request channel signals

Signal Source Description

MEM_REQ_WBUF_WRITE_VALID Cache Indicates that the channel is signaling a valid request.

MEM_REQ_WBUF_WRITE_READY NoC Indicates that the cache is ready to accept a response.

MEM_REQ_WBUF_WRITE_ADDR Cache Target physical address of the request. The address shall be aligned to
the MEM_REQ_WBUF_WRITE_SIZE field. See section 2.4.2.

MEM_REQ_WBUF_WRITE_LEN Cache Indicates the number of transfers in a burst minus one. In this interface,
this number is always 0 (one transfer). However, bigger values may be
used in the future. Thus, it should be decoded.

MEM_REQ_WBUF_WRITE_SIZE Cache Indicate the size of the access. The size is encoded as the power-of-two
of the number of bytes. In this interface, the size shall be less or equal
to logz (CONF_DCACHE_WBUF_WORDS).

MEM_REQ_WBUF_WRITE_ID Cache The identification tag for the request.

MEM_REQ_WBUF_WRITE_COMMAND Cache Indicates the type of operation to be performed. In this interface, this
signal is always a WRITE operation.

MEM_REQ_WBUF_WRITE_ATOMIC Cache In case of atomic operations, it indicates its type. In this interface, this
signal is not used, thus its value shall be ignored.

MEM_REQ_WBUF_WRITE_CACHEABLE Cache This is a hint for the cache hierarchy in the system. It indicates if the
write is bufferable by the cache hierarchy. This means that the write
must be visible in a timely manner at the final destination. However,
write responses can be obtained from an intermediate point. This bit is
always set in this interface.

Table 2.7: Memory write-buffer write data request channel signals
Signal Source Description
MEM_REQ_WBUF_WRITE_DATA_VALID Cache Indicates that the channel is transferring a valid data.

MEM_REQ_WBUF_WRITE_DATA_READY NoC

Indicates that the target is ready to accept the data.

MEM_REQ_WBUF_WRITE_DATA_WDATA Cache

Request write data. It shall be naturally aligned to the request address.
See section 2.4.2.

MEM_REQ_WBUF_WRITE_DATA_BE Cache Request write byte-enable. It shall be naturally aligned to the request
address. See section 2.4.2.
MEM_REQ_WBUF_WRITE_DATA_LAST Cache Indicates the last transfer in a write request burst.

Table 2.8: Memory write-buffer write response channel signals

Signal Source Description

MEM_RESP_WBUF_WRITE_VALID NoC Indicates that the channel is transferring a valid write acknowledge-
ment.

MEM_RESP_WBUF_WRITE_READY Cache Indicates that the cache is ready to accept the acknowledgement.

MEM_RESP_WBUF_WRITE_IS_ATOMIC NoC Indicates whether the atomic operation was successfully processed
(atomically). The value in this signal is ignored in this interface.

MEM_RESP_WBUF_WRITE_ERROR NoC Indicates whether there was an error condition while processing the re-
quest.

MEM_RESP_WBUF_WRITE_ID NoC The identification tag for the request. It corresponds to the ID trans-

ferred with the request.

César Fuguet
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Table 2.9: Memory read uncached request channel signals

Signal Source Description

MEM_REQ_UC_READ_VALID Cache Indicates that the channel is signaling a valid request.

MEM_REQ_UC_READ_READY NoC Indicates that the NoC is ready to accept a request.

MEM_REQ_UC_READ_ADDR Cache Target physical address of the request. The address shall be aligned to
the MEM_REQ_MISS_READ_SIZE field. See section 2.4.2.

MEM_REQ_UC_READ_LEN Cache Indicates the number of transfers in a burst minus one. In this interface,
this number is always 0 (one transfer).

MEM_REQ_UC_READ_SIZE Cache Indicate the size of the access. The size is encoded as the power-of-two
of the number of bytes.

MEM_REQ_UC_READ_ID Cache The identification tag for the request

MEM_REQ_UC_READ_COMMAND Cache Indicates the type of operation to be performed. In this interface, this
signal is always a READ operation.

MEM_REQ_UC_READ_ATOMIC Cache In case of atomic operations, it indicates its type. In this interface, this
signal is not used, thus its value shall be ignored.

MEM_REQ_UC_READ_CACHEABLE Cache This is a hint for the cache hierarchy in the system. It indicates if the
request can be allocated by the cache hierarchy. That is, data can be
prefetched from memory or can be reused for multiple read transac-
tions. This bit is always unset in this interface. Thus data shall come
from the final destination.

Table 2.10: Memory read uncached response channel signals

Signal Source Description

Signals are identical that for the miss response channel signals.
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Table 2.11: Memory write uncached request channel signals

Signal Source Description
MEM_REQ_UC_WRITE_VALID Cache Indicates that the channel is signaling a valid request.
MEM_REQ_UC_WRITE_READY NoC Indicates that the cache is ready to accept a response.
MEM_REQ_UC_WRITE_ADDR Cache Target physical address of the request. The address shall be aligned to
the MEM_REQ_UC_WRITE_SIZE field. See section 2.4.2
MEM_REQ_UC_WRITE_LEN Cache Indicates the number of transfers in a burst minus one. In the current
HPDcache implementation, this number is always 0 (one transfer).
MEM_REQ_UC_WRITE_SIZE Cache Indicate the size of the access. The size is encoded as the power-of-two
of the number of bytes.
MEM_REQ_UC_WRITE_ID Cache The identification tag for the request.
MEM_REQ_UC_WRITE_COMMAND Cache Indicates the type of operation to be performed. In this interface, this
signal is either a WRITE or an ATOMIC operation.
MEM_REQ_UC_WRITE_ATOMIC Cache In case of atomic operations, it indicates its type.
MEM_REQ_UC_WRITE_CACHEABLE Cache This is a hint for the cache hierarchy in the system. It indicates if the

write is bufferable by the cache hierarchy. This means that the write
must be visible in a timely manner at the final destination. However,
write responses can be obtained from an intermediate point. This bit is
always unset in this interface (thus transactions are non-bufferable,
and the response shall come from the final destination).

Table 2.12: Memory write data uncached request channel signals

Signal Source

Description
Signals are identical to those for the write data request channel signals.

Table 2.13: Memory write uncached response channel signals

Signal Source Description

MEM_RESP_UC_WRITE_VALID NoC Indicates that the channel is transferring a valid write acknowledge-
ment.

MEM_RESP_UC_WRITE_READY Cache Indicates that the cache is ready to accept the acknowledgement.

MEM_RESP_UC_WRITE_IS_ATOMIC NoC Indicates whether the atomic operation was successfully processed
(atomically).

MEM_RESP_UC_WRITE_ERROR NoC Indicates whether there was an error condition while processing the re-
quest.

MEM_RESP_UC_WRITE_ID NoC The identification tag for the request. It corresponds to the ID trans-

2.4 Interfaces’ requirements

ferred with the request.

This section describes the basic protocol transaction requirements for the different interfaces in the

HPDcache.

2.4.1 Valid/ready handshake process

All interfaces in the HPDcache use a VALID/READY handshake process to transfer a payload between a
source and a destination. The payload contains the address, data and control information.

As a reminder, the interfaces in the HPDcache are the following:

¢ Requesters’ request interface (table 2.2);

¢ Requesters’ response interface (table 2.3);
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¢ Memory miss read request interface (table 2.4);

e Memory miss read response interface (table 2.5);

¢ Memory write-buffer write request interface (table 2.6);

¢ Memory write-buffer write data request interface (table 2.7);
* Memory write-buffer write response interface (table 2.8);

¢ Memory uncached read request interface (table 2.9);

¢ Memory uncached read response interface (table 2.10);

e Memory uncached write request interface (table 2.11);

¢ Memory uncached write data request interface (table 2.12);
* Memory uncached write response interface (table 2.13);

The source sets to 1 the VALID signal to indicate when the payload is available. The destination sets to 1
the READY signal to indicate that it can accept that payload. Transfer occurs only when both the VALID
and READY signals are set to 1 on the next rising edge of the clock.

A source is not permitted to wait until READY is set to 1 before setting VALID to 1.

A destination may or not wait for VALID to set the READY to 1 (figure 2.1 (a) & (c)). In other words, a
destination may set READY to 1 before an actual transfer is available (figure 2.1 (a)).

When VALID is set to 1, the source must keep it that way until the handshake occurs. This is, at the next
rising edge when both VALID and READY (from the destination) are set to 1. In other words, a source
cannot retire a pending VALID transfer (figure 2.1 (b)).

After an effective transfer (VALID and READY set to 1), the source may keep VALID set to 1 in the next
cycle to signal a new transfer (with a new payload). In the same manner, the destination may keep READY
set to 1 if it can accept a new transfer. This allows back-to-back transfers, with no idle cycles, between a
source and a destination (figure 2.1 (d)).

All interfaces are synchronous to the rising edge of the same global clock (table 2.1).

CLK CLK

PAYLOAD /X data X/ PAYLOAD 7/X data X/

VALID [\ VALD [\
READY [\ READY [\

(@) (b)
CLK CLK
PAYLOAD 7NdataX”/ PAYLOAD 77X dat0 Y dat1 X/

VALID / \ VALID / \
READY / \ READY / \

(0 (d)

Figure 2.1: VALID/READY scenarios
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Requesters’ reponse interface

In the case of the requesters’ response interfaces, there is a particularity. For these interfaces, it is as-
sumed that the READY signal is always set to 1. That is why the READY signal is not actually imple-
mented on those interfaces. In other words, the requester must unconditionally accept the response,
when it arrives.

2.4.2 Address, data and byte enable alignment
Address alignment

In all request interfaces (Requesters’ request interface, Memory miss read request interface, Memory
write-buffer write request interface, Memory uncached read request interface, Memory uncached write
request interface), the address transfered (ADDR) shall be byte-aligned to the value of the corresponding
SIZE signal in that interface.

Some examples are illustrated in figure 2.2. In the first case, the SIZE value is 2 (which corresponds to
22 = 4 bytes). Thus, the address must be a multiple of 4; In the second case, SIZE value is 3. Thus, the
address must be a multiple of 8. Finally, in the third case, SIZE value is 0. Thus, there is no constraint on
the address alignment.

Data alignment

The data must be naturally aligned to the address (ADDR) and the maximum valid bytes of the transfer
must be equal to 25"?E. This means that the first valid byte in the DATA signal must be at the indicated
offset of the address. Here, the offset corresponds to the least significant bits of the address, that allow to
indicate a byte within the DATA word. For example, if the DATA signal is 128 bits wide (16 bytes), then
the offset corresponds to the first 4 bits of the ADDR signal.

Some examples are illustrated in figure 2.2. As illustrated, within the data word, only bytes in the range
from the indicated offset in the address, to that offset plus 25%F can contain valid data. Other bytes must
be ignored by the destination.

Additionally, within the range described above, the BE signal indicates which bytes within that range
are actually valid. Bytes in the WDATA signal where the BE signals are set to 0, must be ignored by the
destination.

Byte Enable (BE) alignment

The BE signal must be naturally aligned to the address (ADDR) and the number of bits set in this signal
must be less or equal to 252, This means that the first valid bit in the BE signal must be at the indi-
cated offset of the address. The offset is the same as the one explained above in the "Data alignment"
paragraph.

Some examples are illustrated in figure 2.2. As illustrated, within the BE word, only bits in the range from
the indicated offset in the address, to that offset plus 257F can be set. Other bits outside that range must
be set to 0.
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Figure 2.2: Address, Data and Byte Enable Alignment in Requests
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2.5 Requesters interface attributes

2.5.1 Type of operation

A requester indicates the required operation on the 4-bit, DCACHE_REQ_OP signal. The supported
operation are detailed in table 2.14.

Table 2.14: Request operation types

Mnemonic Encoding Type

DCACHE_REQ_LOAD 0b0000 Read operation
DCACHE_REQ_STORE 0b0001 Write operation
DCACHE_REQ_AMO_LR 0b0100 Atomic Load-reserved operation
DCACHE_REQ_AMO_SC 0b0101 Atomic Store-conditional operation

DCACHE_REQ_AMO_SWAP 0b0110 Atomic SWAP operation

DCACHE_REQ_AMO_ADD 0b0111 Atomic integer ADD operation
DCACHE_REQ_AMO_AND 0b1000 Atomic bitwise AND operation

DCACHE_REQ_AMO_OR 0b1001 Atomic bitwise OR operation
DCACHE_REQ_AMO_XOR 0b1010 Atomic bitwise XOR operation
DCACHE_REQ_AMO_MAX 0b1011 Atomic integer signed MAX operation
DCACHE_REQ_AMO_MAXU  0b1100 Atomic integer unsigned MAX operation
DCACHE_REQ_AMO_MIN 0b1101 Atomic integer signed MIN operation
DCACHE_REQ_AMO_MINU 0b1110 Atomic integer unsigned MIN operation
DCACHE_REQ_CMO 0Ob1111 Cache Maintenance Operation (CMO)

Load and store operations are normal read and write operations from/to the specified address.

Atomic operations are the ones specified in the Atomic (A) extension of the The RISC-V Instruction Set
Manual, Volume I: Unprivileged ISA[2]. More details on how this cache implements them are found in
chapter 6.

Cache Maintenance Operations (CMOs) are explained in chapter 5

2.5.2 Source identifier

Each request identifies its source through the DCACHE_REQ_SID signal. The DCACHE_REQ_SID signal
shall be decoded when the DCACHE_REQ_VALID signal is set to 1.

The width of this signal is CONF_DCACHE_REQ_SRC_ID_WIDTH (table 1.1) bits.
The HPDcache reflects the value of the SID of the request into the corresponding SID of the response.

Each port must have an unique ID that corresponds to its number. Each port is numbered from 0 to
N —1. Port number N is dedicated to the hardware memory prefetcher. This number shall be constant
for a given port (requester).

The HPDcache uses this information to route responses to the correct requester.

2.5.3 Transaction identifier

Each request identifies transactions through the DCACHE_REQ_TID signal. The DCACHE_REQ_TID
signal shall be decoded when the DCACHE_REQ_VALID signal is set to 1.

The width of this signal is CONF_DCACHE_REQ_TRANS_ID_WIDTH bits (table 1.1).

César Fuguet Copyright © 2023 Commissariat a 'Energie Atomique et aux Energies Alternatives (CEA) 29



Requesters interface attributes Version 1.0.0-draft

This signal can contain any value from 0 to 2CONF_DCACHE_REQ_TRANS_ID WIDTH _ 4

The HPDcache forwards the value of the TID of the request into the TID of the corresponding response.

A requester can issue multiple transactions without waiting for earlier transactions to complete. Because
the HPDcache can respond to these transactions in a different order than that of requests, the requester
can use the TID to match the responses with respect to requests.

The ID of transactions is not necessarily unique. A requester may reuse a given transaction ID for differ-
ent transactions. That is, even when some of these transactions are not yet completed. In this case, when
the requester starts multiple transactions with the same TID, the requester cannot match responses and
requests. As explained above, this is because the cache can respond out-of-order with respect to requests.

2.5.4 Cacheability

This cache considers that the memory space is segmented. A segment corresponds to an address range:
a base address and an end address. Some segments are cacheable and others not. The HPDcache needs
to know which segments are cacheable to determine if for a given read request, it needs to replicate read
data into the cache.

The request interface implements an uncacheable bit (DCACHE_REQ_UNCACHEABLE). When this
bit is set, the access is considered uncacheable. The DCACHE_REQ_UNCACHEABLE signal shall be
decoded when the DCACHE_REQ_VALID signal is set to 1.

For a given address, the uncacheable attribute must be consistent between accesses.
The granularity is the cacheline. In the event that the same address is accessed with dif-
ferent values in the uncacheable attribute, the behavior of the cache for that address is
unpredictable.

2.5.5 Need response

For any given request, a requester can set to 0 the bit DCACHE_REQ_NEED_RSP to indicate that it does
not wish a response for that request. The DCACHE_REQ_NEED_RSP signal shall be decoded when the
DCACHE_REQ_VALID signal is set to 1.

When DCACHE_REQ_NEED_RSP is set to 0, the HPDcache processes the request but it does not send
an acknowledge to the corresponding requester when the transaction is completed.

2.5.6 Error response

The response interface contains a single-bit DCACHE_RSP_ERROR signal. This signal is set to 1 by the
HPDcache when some error condition occurred during the processing of the corresponding request. The
DCACHE_RSP_ERROR signal shall be decoded when the DCACHE_RSP_VALID signal is set to 1.

When the DCACHE_RSP_ERROR signal is set to 1 in the response, the effect of the corresponding re-
quest is undetermined. In the case of LOAD or AMOs operations (see section 2.5.1), the RDATA signal in
the response does not contain any valid data.
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2.6 Memory interface attributes

2.6.1 Type of operation

Table 2.15: Memory request operation types

Mnemonic Encoding Type
DCACHE_MEM_LOAD 0b00 Read operation
DCACHE_MEM_STORE 0b01 Write operation
DCACHE_MEM_ATOMIC 0bl0 Atomic operation

Load and store operations are normal read and write operations from/to the specified address.

In case of an atomic operation request (DCACHE_MEM_ATOMIC), the specific operation is specified in
the MEM_REQ_ATOMIC signal.

Atomic operations on the memory interface

The supported atomic operations are listed in table 2.16. These are transmitted in the MEM_REQ_ATOMIC
signal. Note that these operations are compatible with those in AXI.

Table 2.16: Memory request atomic operation types

Mnemonic Encoding Type
DCACHE_MEM_ATOMIC_ADD 0b0000 Atomic fetch-and-add operation
DCACHE_MEM_ATOMIC_CLR 0b0001 Atomic fetch-and-clear operation
DCACHE_MEM_ATOMIC_SET 0b0010 Atomic fetch-and-set operation

DCACHE_MEM_ATOMIC_EOR 0b0011 Atomic fetch-and-exclusive-or operation
DCACHE_MEM_ATOMIC_SMAX  0b0100 Atomic fetch-and-maximum (signed) operation

DCACHE_MEM_ATOMIC_SMIN 0b0101 Atomic fetch-and-minimum (signed) operation
DCACHE_MEM_ATOMIC_UMAX  0b0110 Atomic fetch-and-maximum (unsigned) operation
DCACHE_MEM_ATOMIC_UMIN 0b0111 Atomic fetch-and-minimum (unsigned) operation
DCACHE_MEM_ATOMIC_SWAP 0b1000 Atomic swap operation
DCACHE_MEM_ATOMIC_LDEX 0b1100 Load-exclusive operation
DCACHE_MEM_ATOMIC_STEX 0b1101 Store-exclusive operation

Operations used per interface

As areminder, the HPDcache implements multiple (four) request interfaces to the memory:
* Memory miss read request interface (table 2.4);
¢ Memory write-buffer (wbuf) write request interface (table 2.6);
e Memory uncached read request interface (table 2.9);
¢ Memory uncached write request interface (table 2.11);

Table 2.17 indicates the type of operations that each of these four request interfaces can issue.
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Table 2.17: Supported operation types by request interfaces to the memory
Type Interfaces

- Memory miss read request;

MEM_REQ_LOAD - Memory uncached read request.

- Memory write-buffer write request;

MEM_REQ_STORE - Memory uncached write request.

MEM_REQ_ATOMIC - Memory uncached write request.

Responses for read-modify-write atomic operations on the memory interface

The requests listed below behave as a read-modify-write operations:

e DCACHE_MEM_ATOMIC_ADD

e DCACHE_MEM_ATOMIC_CLR

e DCACHE_MEM_ATOMIC_SET

e DCACHE_MEM_ATOMIC_EOR

e DCACHE_MEM_ATOMIC_SMAX

e DCACHE_MEM_ATOMIC_SMIN

e DCACHE_MEM_ATOMIC_UMAX

e DCACHE_MEM_ATOMIC_UMIN

e DCACHE_MEM_ATOMIC_SWAP
These requests are forwarded to the memory through the uncached write request interface (table 2.11).
A particularity of these requests is that they generate two responses from the memory:

¢ Old data value from memory is returned through the memory uncached read response interface
(table 2.10).

* Write acknowledgement is returned through the memory uncached write response interface (table 2.13).
Both responses may arrive in any given order to the initiating HPDcache.

Regarding errors, if any response has its ERROR signal set to 1 (MEM_RESP_UC_* _ERROR), the HPDcache
considers that the operation was not completed. It waits for both responses and it forwards an error re-
sponse (DCACHE_RSP_ERROR s set to 1) to the corresponding requester on the HPDcache requesters’
side.

Responses for exclusive load and store operations on the memory interface

Exclusive load and store operations are issued as normal load and store operations on the memory un-
cached read request interface (table 2.9) and memory uncached write request interface (table 2.11), re-
spectively.

Specific operation types are however used on these exclusive requests: DCACHE_MEM_ATOMIC_LDEX
for loads; and DCACHE_MEM_ATOMIC_STEX for stores.

These requests behave similarly to normal load and store to the memory but provide some additional
properties described in chapter 6.

In the case of the DCACHE_MEM_ATOMIC_STEX request, the write acknowledgement contains an ad-
ditional information in the MEM_RESP_UC_WRITE_IS_ATOMIC. If this signal is set to 1, the exclusive
store was "atomic", hence the data was actually written in memory, Otherwise, if this signal is set to 0,
the exclusive store was "non-atomic". Hence the write operation was aborted.

The HPDcache uses exclusive stores in case of Store-Conditional (SC) operations from requesters. De-
pending on the MEM_RESP_UC_WRITE_IS_ATOMIC value, the HPDcache responds to the requester
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according to the rules explained in section 6.5.2. A "non-atomic" response is considered a "SC failure",
and a "atomic" response is considered a "SC success".
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Figure 3.1 depicts a global view of the HPDcache. On the upper part of the cache there is the interface
from/to requesters. On the bottom part there is the interface from/to the memory.
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Figure 3.1: HPDcache core

3.1 Cache Controller

The cache controller is responsible for decoding and issuing the requests to the appropriate handler.
The cache controller implements a 3-stage pipeline. This pipeline is capable of accepting one request
per cycle. However, there are some scenarios where the pipeline, may either stall, or put a request on
hold in a side buffer called Replay Table (RTAB).

The first stage (stage 0) of the pipeline arbitrates between requests from the miss handler (refill), RTAB,
and requesters; the second stage (stage 1) responds to loads (in case of hit) and to stores; the third stage
(stage 2) is only used by loads in case of miss. In this last stage, the cache allocates a new entry in the
MSHR.

A request on stage 0 can either be consumed on that cycle (forwarded to the stage 1 or to the RTAB), or
wait, when the pipeline is stalled. A request on stage 1 or stage 2 always advances. In stage 1 the request
is either acknowledged (load hit or write acknowledgement), forwarded to stage 2 (load miss), or put into
the RTAB.

Pipeline stalls in stage 0

Stalls in stage 0 are necessary in some specific scenarios, that are listed below. When there is a stall in
stage 0, a new request from a requester cannot be accepted, this is, the corresponding READY signal is
kept low (see section 2.4.1). Requests in the other stages (1 and 2) are processed normally (even in case
of a stall in stage 0).

Event 1: The RTAB is full;

Event 2: A CMO invalidation or fence operation is being processed by the corresponding handler;
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Event 3: An uncacheable or atomic operation is being processed by the corresponding handler;
Event 4: There is aload miss in stage 1;

Event 5: There is a store in stage 1 and the request in stage 0 is a load (structural hazard on access to the
internal cache data memory);

The number of clock cycles of the stall in stage 0 depends on the type of event:
* Events 4 & 5: the number of clock cycles is always one.
¢ Events 1, 2 & 3: the number of clock cycles is variable:
- Event 1: it depends on when an entry of the RTAB is freed.

— Events 2 & 3: it depends on the latency of the corresponding operation.

3.1.1 On-Hold Requests

In some scenarios, a request that has been accepted in the pipeline can be later put on-hold by the cache
controller. When a request is put on-hold, it is re-executed when all the blocking conditions have been
removed. The blocking conditions putting a request on-hold are the following:

Case 1: Cacheable LOAD or PREFETCH, and there is a hit on a pending miss (hit on the MSHR)

When there is a read miss on an address (cacheline granurality) for which there is a pending read
miss, then the more recent one needs to wait for the previous one to be served. This allows the
latest one to read the data from the cache after the refill operation completes.

Case 2: Cacheable LOAD or PREFETCH, there is a miss on the cache, and there is a hit (cacheline gran-
ularity) on an opened, closed or sent entry of the Write Buffer (WBUF)

When there is a read miss on an address, the cache controller needs to read from the memory
the missing cacheline. As the NoC implements different physical channels for read and write
requests, there is a race condition between the read miss and a pending write operation. If the
read miss arrives first to the memory, it would read the old data (which violates data consistency
rules section 3.1.2). This blocking condition causes that the LOAD or PREFETCH will have a delay
penalty of up to two transaction delays: one for the write to complete, then one for the read.

Case 3: Cacheable STORE, there is a miss on the cache, and there is a hit on a pending miss (hit on the
MSHR)

When writing, as the NoC implements different physical channels for read and write requests, there
is a race condition between the STORE and the pending read miss. If the STORE arrives first to
the memory, the earlier read miss would read the new data (which violates data consistency rules
in section 3.1.2).

Case 4: Cacheable STORE, and there is a hit on a closed entry of the WBUF, or the WBUF is full

Writes on the same address need to be sent in order (to respect data consistency rules). When there
is a closed entry in the WBUF, this means that it is waiting to be sent to the memory. While it is not
sent, the cache cannot open a new entry in the WBUF for the same address, because they may be
sent in an arbitrary order.

Case 5: Cacheable LOAD/PREFETCH/STORE, and there is a hit on an entry of the RTAB

Accesses to the same address (in cacheline granularity) MUST be processed in order (to respect
data consistency rules). In case of a hit with a valid entry in the RTAB, the new request is written
into the corresponding list of the RTAB.
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Case 6: Cacheable LOAD or PREFETCH, there is a miss on the cache, and the MSHR has no available
slots

When there is a read miss on an address, the cache controller needs to allocate a new entry in the
MSHR. The MSHR is a set-associative memory. If there is no available WAY to store the new read
miss request, then this request needs to wait for an entry in the MSHR with the corresponding SET
to be freed. This is when a refill operation is completed for a cacheline with the same MSHR SET
index.

Case 7: Cacheable LOAD or PREFETCH, there is a miss on the cache, and the miss handler FSM cannot
send the read miss request

When there is a read miss on an address, the cache controller needs to read from memory the
missing cacheline. The read miss request is sent by the miss handler FSM, but if there is conges-
tion in the NoC, this read request cannot be issued. To avoid blocking the pipeline and creating a
deadlock, the request is put on-hold.

All these conditions, except for case 5, are checked on the second stage (stage 1) of the pipeline. Case 5 is
checked in the first stage (stage 0) of the pipeline. If one of the conditions is met, the request is put into
the RTAB. It is kept on-hold until its blocking condition is solved. At that moment, the request can be
replayed from the RTAB on the pipeline from stage 0.

The RTAB can store multiple requests (on-hold requests). The idea is to improve the throughput of the
cache by reducing the number of cases where there is a head of line blocking at the client interface.

When arequest cannot be processed right away, because it depends on the completion of a previous one,
the request is stored in the replay table. This allows new requests to arrive to the data cache and to be
potentially executed (in an out-of-order fashion). To prevent a deadlock, if the RTAB is full, the HPDcache
does not accept new requests.

The ready requests in the RTAB have higher priority than new requests. These requests are executed as
soon as possible, that is, when their dependencies are resolved.

To execute a request from the RTAB, the cache controller complies to the rules defined in section 3.1.2.

3.1.2 Memory Consistency Rules (MCRs)

When multiple requests are put on-hold in the RTAB, the cache controller may issue them (once they
are ready) in a different order than the order in which they arrived (program order). However, the cache
controller needs to respect certain rules, here called Memory Consistency Rules, to allow the requesters
to have a predictable behavior.

The set of rules followed by the cache controller are those defined by the RVWMO memory consistency
model [2]. A brief statement summarizing these rules is the following: if one memory access (read or
write), A, precedes another memory access (read or write), B, and they access overlapping addresses,
then they MUST be executed in program order (A then B). It can be deduced from this statement, that
non-overlapping accesses can be executed in any order.

Of course, the cache controller also needs to respect the progress axiom: "no memory operation may
be preceded by an infinite number of memory operations". That is, all memory operations need to be
processed at some point in time, thus cannot wait indefinitely.

3.2 Miss Handler

This block is in charge of handling read miss requests to the memory. It has three parts:

1. The first part is in charge of forwarding read miss requests to the memory;
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2. The second part is in charge of tracking the status of in-flight read misses;

3. The third part is in charge of writing into the cache the response data from the memory, and update
the cache directory accordingly.

3.2.1 Multiple-entry Miss Status Holding Register (MSHR)

The second part (tracking) of the miss handler contains an essential component of the HPDcache: the
set-associative multi-entry MSHR. Each entry of this component contains the status for each in-flight
read miss request to the memory. Therefore, the number of entries in the MSHR defines the maximum
number of in-flight read miss requests.

The number of entries in the MSHR depends on two configuration values: CONF_DCACHE_MSHR_WAYS
and CONF_DCACHE_MSHR_SETS. The number of entries is computed as:

DCACHE_MSHR_SETS x CONF_DCACHE_MSHR_WAYS

As for any set-associative array:

When CONF_DCACHE_MSHR_SETS =1 and CONF_DCACHE_MSHR_WAYS > 1
— The MSHR behaves as a fully-associative access array.

When CONF_DCACHE_MSHR_SETS > 1 and CONF_DCACHE_MSHR_WAYS =1
— The MSHR behaves as a direct access array.

When CONF_DCACHE_MSHR_SETS > 1 and CONF_DCACHE_MSHR_WAYS > 1
— The MSHR behaves as a set-associative access array

A high number of entries in the MSHR allows to overlap multiple accesses to the memory, and hides
its latency. Of course, the more entries there are, the more area the MSHR consumes. Therefore, the
system architect must choose MSHR parameters depending on a combination of memory latency, mem-
ory throughput, required area and performance, and the capability of requesters to issue multiple read
transactions.

Regarding the last condition, regardless whether the requesters can issue multiple read
requests, the hardware memory prefetcher exploits having multiple in-flight read miss
requests.

An entry in the MSHR contains the following information:

Bits T R S w 1

Description MSHRTag RequestID SourceID WordIndex Need Response

Field Width

MSHR tag (T) T =DCACHE_NLINE_WIDTH —logo (CONF_DCACHE_MSHR_SETS)
Request ID (R) R=CONF_DCACHE_REQ_TRANS_ID_WIDTH

Source ID (S) S =CONF_DCACHE_REQ_SRC_ID_WIDTH

Word Index (W) W =loga(CONF_DCACHE_CL_WORDS)
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MSHR implementation

In order to limit the area cost of the MSHR, it can be implemented using SRAM macros. The depth of
the macros is CONF_DCACHE_MSHR_SETS_PER_RAM. Multiple ways, for the same set, can be put
side-by-side in the same SRAM word (CONF_DCACHE_MSHR_WAYS_PER_RAM_WORD), therefore
the width is a multiple of DCACHE_MSHR_ENTRY =T + R+ S+ W + 1 bits. The total number of SRAM
macros is:

(CONF_DCACHE_MSHR_WAYS/CONF_DCACHE_MSHR_WAYS_PER_RAM_WORD) x
[CONF_DCACHE_MSHR_SETS/CONF_DCACHE_MSHR_SETS_PER_RAM]

SRAM macros shall be selected depending on the required number of entries, and the target technology
node. Additional information about MSHR SRAM macros can be found in appendix A.1. When the num-
ber of entries is low (e.g. sets times ways are less than 16), it is generally better to implement the MSHR
using flip-flops.

This makes MSHR fully-associative and thus removes associativity conflicts.

3.3 Uncacheable Handler

This block is responsible for handling uncacheable (see section 2.5.4) load and store requests, as well as
atomic requests (regardless of whether they are cacheable or not). For more information about atomic
requests see chapter 6.

All requests handled by this block produce a request to the memory. This request to the memory is
issued through the memory uncached interfaces. Uncacheable read requests are forwarded to the mem-
ory through the memory read uncached interface (table 2.9); and uncacheable write requests or atomic
requests are forwarded through the memory write uncached interface (table 2.11).

3.4 Cache Maintenance Operation (CMO) Handler

This block is responsible for handling CMOs. CMOs are special requests from requesters that address the
cache itself, and not the memory nor a peripheral. These operations allow to either invalidate designated
cachelines in the cache, or produce explicit memory read and write fences.

The complete list of supported CMOs is detailed in chapter 5.

3.5 Cache Directory and Data

3.5.1 RAM Organization

The HPDcache cache uses RAM macros for the directory and data parts of the cache. These RAM macros
are synchronous, read/write, single-port RAMs. Additional information about RAM macros in the cache
can be found in appendix A.1.

The organization of the RAMs, for the directory and the data, targets the following:
1. High memory bandwidth to/from the requesters

To improve performance, the organization allows to read one data word (1, 2, 4, 8, 16 or 32 bytes)
per cycle, with a latency of one cycle.
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2. Low energy-consumption

To limit the energy-consumption, the RAMs are organized in a way that the cache enables only a
limited number of RAM macros. This number depends on the number of requested bytes, and it
also depends on the target technology. Depending on the target technology, the RAM macros have
different trade-offs between width, depth and timing (performance).

3. Small RAM footprint

To limit the footprint of RAMs, the selected organization implements a small number of RAMs
macros. The macros are selected in a way that they are as deep and as wide as possible. The
selected ratios (depth x width) depend on the target technology as explained above.

3.5.2 Example cache data/directory RAM organization

Figure 3.2 illustrates an example organization of the RAMs. The illustrated organization allows to imple-
ment 32 KB of data cache (128 sets, 4 ways, and 64 bytes lines). This example organization has a refilling
latency of two cycles because the cache needs to write two different entries on a given memory cut.

64-bits address from processor

Q@ tag set :word :
63 5655 1312 65 32 0
@word[1:0]
ways l en[3] en[2] len[l] len[G] {eset,@word[2]}
way3 way2 wa way2 way3 way2 way3 way2
wail waze Eail way0 Eail waie Eail waze -
set0:word3 set0:word2 setOiwordl set@:iword®
1 set@:iword7 set0:iword6 set0:iword5 setO:iword4 7
tag setliword3 setliword2 setliwordl setliword®
@set setliword7 setliword6 setliword5 setliwordd
— sets x
words/x_cuts
sets
set127:word3 set127:word2 set127:wordl set127;word@
set127:word7 ™ setl27:word6 ™ setl27:word5 ™ setl27:word4 —
@tag tags word selection @word[1:0]
valids

|

way selection

% 64 bits

data to processor

Figure 3.2: Data Cache Micro-Architecture

The example RAM organization in figure 3.2 allows to access from 1 to 32 bytes of a given cacheline per
cycle.

The energy consumption is dependent on the length of the access. Accesses from 1 to 8 bytes need to
read two memory cuts (one containing ways 0 and 1, and the other containing ways 2 and 3); accesses
from 8 to 16 bytes need to read 4 memory cuts; and so on. For reading 24 to 32 bytes, the cache needs to
access all the cuts at the same time (8 cuts).
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3.6 Replay Table (RTAB)

The RTAB is implemented as an array of linked lists. It is a fully-associative multi-entry buffer, where
each valid entry, belongs to a linked list. It is implemented in flip-flops. The linked lists contain a list
of requests that target the same cacheline. There can be multiple linked lists, but each shall target a
different cacheline. The head of each linked list contains the oldest request while the tail contains the
newest request. The requests are processed from the head to the tail in order to respect the Memory
Consistency Rules (MCRs) explained in section section 3.1.2.

Regarding the pop operation (extracting a ready request from the replay table), it is possible that once
the request is replayed, some of the resources it needs are again busy. Therefore, the request needs to be
put on-hold again. In this case, the request needs to keep its position as head of the linked list. This is to
preserve the program order. For this reason, the pop operation is implemented as a two-step operation:
pop then commit, or pop then rollback. The commit operation allows to actually remove the request,
while the rollback allows to undo the pop.

An entry of the RTAB has the following structure (LL means Linked List):

Request LL tail LL head LL next Deps Valid
(=200 bits) (1 bit) (1 bit) (2-3 bits) (5 bits) (1 bit)

¢ Request: contains the on-hold request from the core (data + meta-data).

¢ LL tail: indicates if the entry is the tail of a linked list.

¢ LL head: indicates if the entry is the head of a linked list.

¢ LL next: designates the next (older) request in the linked list.

¢ Deps bits: indicates the kind of dependency that keeps the request on-hold.

* Valid: indicates if the entry contains valid information (if unset the entry is free).

The following table briefly describes the possible dependencies between memory requests. For each
kind of dependency, there is a corresponding bit in the "deps bits" field of RTAB entries.

Dependency Description
MSHR_hit There is an outstanding miss request on the target address
MSHR_full The MSHR is full
MISS_handler_busy The MISS HANDLER is busy and cannot send a new miss request
WBUF_hit There is a match with a open, closed, or sent entry in the write buffer
WBUF_not_ready There is a match with a closed entry in the write buffer or the write-buffer
is full
RTAB operations

The RTAB implements the following operations:
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Operation

Description

rtab_alloc()

Allocate a new linked list

rtab_alloc_and_link()

Allocate a new entry and link it to an existing linked list

rtab_pop_try()

Get a ready request from one of the linked list (wihout actually removing
it from the list)

rtab_pop_commit()

Actually remove a popped request from the list

rtab_pop_rollback()

Rollback a previously popped request (with a possible update of its de-
pendencies)

rtab_find_ready()

Find a ready request among the heads of valid linked lists

rtab_find_empty()

Find an empty request

rtab_empty()

Is the RTAB empty ?

rtab_full()

Is the RTAB full ?

update_deps()

Update the dependency bits of valid requests

int rtab_alloc(req_t r, deps_t d)

{

int index = rtab_find_empty_entry ();

rtab [index]

valid
deps
11_head
I1_tail
I1_next
request

I

= {

return index;

}

int rtab_alloc_and_link(req_t r, int n)

{

int index = rtab_find_empty_entry ();

/1 replace the tail of the linked list

rtab[n].1l_tail = 0;

// add the new request as the tail of the linked list

rtab [index]

valid
deps
11_head
I1_tail
I1_next
request

s

= |

= B I

return index;
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req_t rtab_pop_try(int &index)
{
index = rtab_find_ready_entry ();

/] Temporarily unset the head bit. This is to prevent the
/1 request to be rescheduled.
rtab[index].1ll_head = 0;

return rtab[index].request;

}

void rtab_pop_commit(int index)
{
/1 Change the head of the popped linked list
/1 (look for a valid entry with the next field
/! pointing to the popped entry)
for (int i = 0; i < RTAB_NENTRIES; i++) {
if (rtab[i].valid & (i != index) && (rtab[i].next == index) f{
rtab[i].1ll_head = 1;
}
}

rtab [index]. valid = 0;
1

void rtab_pop_rollback(int index, bitvector deps)
{

rtab [index].11_head 1;

rtab [index].deps = deps;
}

int rtab_find_ready_entry(int last)
{
/1 choose a ready entry using a round-robin policy
int i = (last + 1) % RTAB_NENTRIES;
for (;) f
/1 ready entry found
if (rtab[i].valid && rtab[i].ll_head && (rtab[i].deps == 0))
return i;

/1 there is no ready entry
if (i == last)
return -1;

i = (i + 1) % RTAB_NENTRIES;
}

int rtab_find_empty_entry ()
{
for (int i = 0; i < RTAB_NENTRIES; i++)
if (!rtab[i].valid)
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return i;

return -1;

bool rtab_is_full ()

{
return (rtab_find_empty_entry () == -1);
1

int rtab_is_empty ()
{
for (int i = 0; i < RTAB_NENTRIES; i++)
if (rtab[i].valid)
return 0;

return 1;

3.6.1 RTAB integration in the cache

The data cache has a 3-stages pipeline. The RTAB will be used in stages 0 and 1 (st0 and st1). The following
table summarizes the actions performed on the RTAB:

New Request Match @ in RTAB Match @ in Match @ in Cache Miss Cache Miss WBUFis full
MSHR WBUF AND MSHR is AND Miss
full Handler is
not ready
LOAD alloc_and_link (st0) alloc_new alloc_new alloc_new alloc_new ¢
(stl) (stl) (stl) (stl)
STORE alloc_and_link (st0) alloc_new alloc_new ¢ ¢ alloc_new
(stl) (stl) @if (stl)
wbuf_entry is
closed)

3.6.2 Policy for taking new requests in the data cache
With the RTAB, the cache has three possible sources of requests:

1. Requesters (new requests);

2. the RTAB (on-hold requests);

3. the miss handler (refill requests).
The policy to choose the request is as follows:

rtab_req = rtab_find_ready_entry ();
if (rtab_is_full ()) {
new_req = rtab_req;
} else {
new_req = (rtab_req != -1) ? rtab_req : core_req;

}

accepted_req = round_robin(new_req, refill_req);
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To summarize: RTAB ready requests have higher priority than core requests (this is to flush the pipeline
as fast as possible). However, if the RTAB is full, the cache does not accept core requests because if they
need to be put on-hold that could cause a deadlock. Then, between the refill requests, the RTAB or the
core requests, the data cache applies a round-robin policy.

3.6.3 Possible improvements for the RTAB integration

¢ Avoid introducing a NOP after an entry is replayed (popped). This is currently done to simplify the
resolution of a concurrent alloc_and_link and pop_commit where the request being allocated
depends on the one being popped.

3.7 Write-buffer

This cache implements a write-through policy. In this policy, the write accesses from requesters are
systematically transferred to the memory, regardless of whether the write access hits or misses in the
HPDcache.

To decouple the acknowledgement from the memory to the HPDcache, and the acknowledgement from
the HPDcache to the requester, this HPDcache implements a write-buffer. The goal is to increase the
performance: the requester does not wait the acknowledgement from the memory, which may suffer
from a very high latency. Additionally, to improve the bandwidth utilization of data channels in the NoC,
the write-buffer implements coalescing of write data.

The write-buffer implements two different parts: directory and data. The directory enables tracking of
active writes. The data buffers are used to coalesce writes from the requester. Entries in the data buffers
are usually wider (CONF_DCACHE_WBUF_WORDS) than the data interface of requesters. This is to
enable the coalescing of multiple writes onto contiguous addresses.

A given entry in the directory of the write-buffer may be in four different states:

FREE The entry is available.

OPEN The entry is currently used by a previous write access. The entry accepts new write
accesses (in the same address range) for coalescing.

CLOSED The entry does not accept any new writes, and is waiting to be sent to the memory.

SENT The entry was forwarded to the memory, and is waiting for the acknowledgement.

3.7.1 Memory Write Consistency Model

The HPDcache complies with the RVWMO memory consistency model. Regarding writes, in this consis-
tency model, there are two important properties:

1. The order in which write accesses on different addresses are forwarded to memory MAY differ from
the order they arrived from the requester (program order);

2. Writes onto the same address, MUST be visible in order. If there is a data written by a write A on
address @x followed by an another write B on the same address, the data of A cannot be visible
after the processing of B.

The second property allows write coalescing if the hardware ensures that the last write persists.

The write-buffer exploits the first property. Multiple "in-flight" writes are supported due to the multiple
directory and data entries. These writes can be forwarded to the memory in an order different than the
program order.
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To comply with the second property, the write-buffer does not accept a write when there is an address
conflict with a CLOSED, or SENT entry. In that case, the write is put on-hold following the policy de-
scribed in section 3.1.1. The system may choose to relax the constraint of putting a write on-hold in case
of an address conflict with a SENT entry. This can be relaxed when the NoC guaranties in-order delivery.
The runtime configuration bit cfig_wbuf.S (see table 4.2) shall be deasserted to relax this dependency.

3.7.2 Functional Description

When an entry of the write-buffer directory is in the OPEN or CLOSED states, there is an allocated data
buffer, and it contains data that has not yet been sent to the memory. When an entry of the write-buffer
directory is in the SENT state, the corresponding data was transferred to the memory, thus the corre-
sponding data buffer was freed. A given entry in the write-buffer directory goes from FREE to OPEN
state when a new write is accepted, and cannot be coalesced with another OPEN entry (e.g. not in the
same address range).

A directory entry passes from OPEN to CLOSED after a given number of clock cycles. This number of
clock cycles depends on different runtime configurable values. Each directory entry contains a life-time
counter. This counter starts at 0 when a new write is accepted (FREE->OPEN), and incremented each
cycle while in OPEN. When the counter reaches cfig_wbuf.threshold (see table 4.2), the write-buffer di-
rectory entry goes to CLOSED. Another runtime configurable bit, cfig_wbuf.R (see table 4.2), defines the
behavior of an entry when a new write is coalesced into an OPEN entry. If this last configuration bit is set,
the life-time counter is reset to 0 when a new write is coalesced. Otherwise, the counter keeps its value.

The life-time of a given write-buffer directory entry is longer than the life-time of a data entry. A given
directory entry is freed (SENT->FREE) when the write acknowledgement is received from the memory:.
The number of cycles to get an acknowledgement from the memory may be significant and it is system-
dependent. Thus, to improve utilization of data buffers, the number of entries in the directory is generally
greater than the number of data buffers. However, there is a trade-off between area and performance be-
cause the area cost of data buffers is the most critical cost in the write-buffer. The synthesis-time parame-
ters CONF_DCACHE_WBUF_DIR_ENTRIES and CONF_DCACHE_WBUF_DATA_ENTRIES define the
number of entries in the write-buffer directory and write-buffer data, respectively.

Memory Fences

In multi-core systems, or more generally, in systems with multiple DMA-capable devices, when synchro-
nization is needed, it is necessary to implement memory fences from the software. In the case of RISC-V,
there is specific instructions for this (i.e. fence).

Fence instructions shall be forwarded to the cache to ensure ordering of writes. The fence will force the
write-buffer to send all pending writes before accepting new ones. This cache implements two ways of
signalling a fence: sending a specific CMO instruction from the core (described later on chapter 5), or by
asserting wbuf_flush_i pin (during one cycle).

3.8 Cache-coherency

The current version of the cache does not implement any hardware cache-coherency protocol.

In multi-core systems integrating this cache, cache-coherency needs to be enforced by the software. To
this end, this cache provides cache invalidation instructions among the supported CMOs. These are
described in chapter 5. These can be used to solve the cache-obsolescence problem.

As the cache implements a write-through policy, there is no memory-obsolescence problem. This is
because all writes are forwarded to the memory.
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4.1 Dedicated CSR address space

This CSR address space is not yet implemented in version 1.0.0 of the RTL. In this ver-
sion, runtime configuration values are passed through external ports of the HPDcache.
Performance counters are not implemented either.

The HPDcache defines a dedicated memory address space for configuring and checking the internal sta-
tus. This memory space is shared among all the requesters connected to the same HPDcache. However,
this space is private to those requesters in a system-wide point of view. This is, this dedicated CSR address
space is not visible to other requesters integrated in the system.

The dedicated CSR address space is aligned to 4 Kibytes and has this same size. Current version of the
HPDcache uses a very small subset of this address space, but the aligning to 4 Kibytes, allows easier
mapping in the virtual address space by the Operating System (OS). The smallest virtual/physical page
size defined in the The RISC-V Instruction Set Manual, Volume II: Privileged Architecture[3] is 4 Kibytes.
This is the reason of this choice. Figure 4.1 displays the layout of the dedicated CSR address space of the
HPDcache.

The CFIG_BASE address is specified through an input port of the HPDcache. The name of this input pin
is cfig_base_i. It is a multi-bit signal. The number of bits is CONF_DCACHE_PA_WIDTH.

CFIG_BASE + 0x800 CFIG_BASE + 0x1000

CFIG_BASE + 0x0600 CFIG_BASE + 0xe00
PERF

CFIG_BASE + 0x0400 CFIG_BASE + 0xc00

CFIG_HWPF

CFIG_BASE + 0x0200 CFIG_BASE + 0xa00
CFIG

CFIG_BASE + 0x0000 CFIG_BASE + 0x800

Figure 4.1: Dedicated CSR address space
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Configuration registers

4.2 Configuration registers

Table 4.2 lists the configuration registers implemented in the HPDcache.

These are mapped on the CFIG memory address segment in figure 4.1.

Figure 4.2: Configuration registers in the HPDcache

CFIG Segment

Register Description Base address

cfig_info 64-bits register with cache information < CFIG_BASE > + 0x00
cfig_ctrl 64-bits register for configuring the cache controller =~ <CFIG_BASE > + 0x08
cfig_wbuf 64-bits register for configuring the write-buffer < CFIG_BASE> + 0x10

CFIG_HWPF Segment

Register

Description

Base address

cfig_hwpf_status

64-bits register with the status of the hardware

prefetcher

< CFIG_BASE > + 0x200

for (i = 0; i < 4; i++) {

cfig_hwpf_base_engineli]

64-bits base cline register of the engine i of the

hardware prefetcher

< CFIG_BASE > + 0x200
+ (1 + 1) x0x20 + 0x0

cfig_hwpf_param_engine[i]

64-bits parameters register of the engine i of the

hardware prefetcher

< CFIG_BASE > + 0x200
+ (1 + 1) x0x20 + 0x8

cfig_hwpf_throttle_engineli]

64-bits throttle register of the engine i of the hard-

ware prefetcher

< CFIG_BASE > + 0x200
+ ([ + 1) x0x20 + 0x10

cfig_info - < CFIG_BASE > + 0x00

63

48

23 2019 16 15 8 7 0

ID | HwPf | LnSz Ways Sets

Field Description Mode Reset value Comment

Sets  Number of sets RO CONF_DCACHE_SETS Indicates the number of sets implemented.

Ways Number of ways RO CONF_DCACHE_WAYS Indicates the number of ways implemented.

LnSz Number of bytes per RO logo (DCACHE_CL_WIDTH/8) It contains the logy of the size in bytes of
cacheline (power of 2) cachelines.

HwPf Number of engines RO 4 Indicates the number of simultane-
in the hardware ous streams supported by the hardware
prefetcher prefetcher

ID Version ID RO 0xCEAO Version ID of the HPDcache.
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cfig ctrl - < CFIG_BASE > + 0x08

63 57 56 0

[ IH :
Field Description Mode Reset Comment
value

E Cache Enable RW 0bO0 When set to 0, all memory accesses are consid-
ered non-cacheable.

R Single-entry RTAB (fallback mode) RW 0b0 This is a fallback mode. When set to 1, the
cache controller only uses one entry in the
RTAB.

A Forbid AMO mode (section 6.3) RW 0bO0 When set to 1, the cache controller responds

with an error to AMO requests targeting
cacheable addresses.

cfig wbuf - < CFIG_BASE > + 0x10

63 15 8 10

Threshold | |S|R‘
Field Description Mode Reset Comment
value
R Reset time-counter on write RW Ob1l When set to 1, writes restart the time-counter

in the corresponding write-buffer entry.

S Sequential Write-After-Write RW 0b0 When set to 1, the write-buffer holds-back
writes requests that matches the target ad-
dress of an on-the-fly write.

Threshold Number of keep-alive cycles of RW 0x04 The maximum  accepted value is
entries in the write-buffer CONF_DCACHE_WBUF_TIMECNT_MAX.
When set to 0, a write immediatly closes the
corresponding entry.
cfig hwpf *

These registers are related to the hardware prefetcher. They are mapped on the CFIG_HWPF memory
address segment.

Details on hardware prefetcher configuration registers are in section 7.3.

4.3 Performance counters

The HPDcache provides a set of performance counters. These counters provide important information
that can be used by software developers, at OS level or user application level, to, for example, debug
performance issues.

Table 4.3 lists the performance counters provided by the HPDcache. These are mapped on the PERF
memory address segment in figure 4.1.
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Figure 4.3: Performance counters in the HPDcache

Counter Description Base address

perf_write_req 64-bits counter for processed write requests <PERF_BASE >% + 0x00
perf_read_req 64-bits counter for processed read requests < PERF_BASE >% + 0x08
perf_prefetch_req 64-bits counter for processed prefetch requests <PERF_BASE>% + 0x10
perf_uncached_req 64-bits counter for processed uncached requests < PERF_BASE >% + 0x18
perf_cmo_req 64-bits counter for processed CMO requests <PERF_BASE >% + 0x20
perf_accepted_req 64-bits counter for accepted requests <PERF_BASE >% + 0x28
perf_cache_write_miss  64-bits counter for write cache misses < PERF_BASE >% + 0x30
perf_cache_read_miss 64-bits counter for read cache misses <PERF_BASE >% + 0x38
perf_on_hold_req 64-bits counter for requests put on-hold < PERF_BASE >% + 0x40

a: <PERF_BASE > = < CFIG_BASE > + 0x400

4.4 Eventsignals

In addition to the performance registers explained in section 4.3, the HPDcache provides a set of one-

shot signals that indicate when a given event is detected. As one-shot signals, they are set to 1 for one
cycle each time the corresponding event is detected. If the same event is detected N cycles in a row, the

corresponding event signal will remain set to 1 for N cycles. Table 4.4 lists these event signals.

These event signals are output-only. They can be either left unconnected, if they are not used, or con-

nected with the remainder of the system. The system can use those signals, for example, for counting

those events externally or for triggering some specific actions.

Figure 4.4: Event signals in the HPDcache

Signal

Event description

evt_cache_write_miss_o

Cache miss on write operation

evt_cache_read_miss_o

Cache miss on read operation

evt_uncached_req_o

The cache processed an uncached request

evt_cmo_req_o

The cache processed a CMO request

evt_write_req_o

The cache processed a write request

evt_read_req_o

The cache processed a read request

evt_prefetch_req_o

The cache processed a prefetch request

evt_on_hold_req_o

The cache put on-hold a request
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The HPDcache is able of performing the following Cache Maintenance Operations:

memory write fence;

invalidate a cacheline given a physical address;

invalidate one or more cachelines in a given set given the set and one or more ways;

invalidate all the cachelines;

prefetch the cacheline indicated by its physical address.

Any of the clients of the DCACHE can trigger one of this operation anytime by using specific opcodes in
their request.

Table 5.1: CMO operation types

Mnemonic Encoding Type

DCACHE_CMO_FENCE 0b000 Memory write fence.

DCACHE_CMO_INVAL_NLINE 0b010 Invalidate a given cacheline.
DCACHE_CMO_INVAL_SET_WAY  0b011 Invalidate one or more ways of in a given set of the cache.
DCACHE_CMO_INVAL_ALL 0b100 Invalidate the entire cache.
DCACHE_CMO_PREFETCH 0b101 Prefetch a given cacheline.

The DCACHE_REQ_OP must be set to DCACHE_REQ_CMO (see table 2.14). The CMO subtype (table 5.1)
is transferred into the DCACHE_REQ_SIZE signal of the request.

The following sections describe in detail each of the CMO operations, and how the requests shall be
encoded to trigger each of them.
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5.1 Memory write fence

To make sure that the HPDcache accepts new requests only when all previous writes are sent and ac-
knowledged from the memory, a requester can issue a fence operation.

To do this, the requester shall build the request as follows:

Signal Value

DCACHE_REQ_ADDR *

DCACHE_REQ_OP DCACHE_REQ_CMO
DCACHE_REQ_WDATA *

DCACHE_REQ_BE *

DCACHE_REQ_SIZE DCACHE_CMO_FENCE
DCACHE_REQ_UNCACHEABLE *

DCACHE_REQ_SID Corresponding source ID of the requester
DCACHE_REQ_TID Transaction identifier from the requester
DCACHE_REQ_NEED_RSP *

* means don't care

As for any regular request, the request shall follow the VALID/READY handshake protocol described in
section 2.4.1.

This operation has the following effects:

» All open entries in the write buffer (write requests waiting to be sent to the memory) are immedi-
ately closed;

¢ No new requests from any requester are acknowledged until all pending write requests in the cache
have been acknowledged on the NoC interface.
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5.2 Invalidate a cacheline by its physical address

To invalidate a cacheline by its physical address, the requester shall build the request as follows:

Signal

Value

DCACHE_REQ_ADDR

Physical address to invalidate in the cache.

DCACHE_REQ_OP

DCACHE_REQ_CMO

DCACHE_REQ_WDATA

*

DCACHE_REQ_BE

*

DCACHE_REQ_SIZE

DCACHE_CMOL_INVAL_NLINE

DCACHE_REQ_UNCACHEABLE

*

DCACHE_REQ_SID

Corresponding source ID of the requester

DCACHE_REQ_TID

Transaction identifier from the requester

DCACHE_REQ_NEED_RSP

%

* means don't care

As for any regular request, the request shall follow the VALID/READY handshake protocol described in

section 2.4.1.

For the sake of design simplification, this operation works as a memory read fence. That is, before han-
dling the operation, the HPDcache waits for all pending read misses to complete. Future versions of the
HPDcache could wait only for a pending read miss on the same address that is being invalidated.

If the given physical address is not cached, the operation does nothing. However it still works as a mem-

ory read fence.

Regarding the latency of this operation, it depends on the time to serve all pending read misses. Only one
cycle is needed to invalidate the corresponding cacheline.
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Invalidate a group of cachelines by their a set and way

5.3 Invalidate a group of cachelines by their a set and way

To invalidate a group of cachelines, the requester shall build the request as follows:

Signal

Value

DCACHE_REQ_ADDR

Index of the set to invalidate.

DCACHE_REQ_OP

DCACHE_REQ_CMO

DCACHE_REQ_WDATA

Bit-vector with target ways to invalidate. The number of
bits decoded depends on the number of ways implemented
(CONF_DCACHE_WAYS). The least significant bit corresponds
to way 0, the second to way 1, etc.

DCACHE_REQ_BE

%

DCACHE_REQ_SIZE

DCACHE_CMO_INVAL_SET_WAY

DCACHE_REQ_UNCACHEABLE

%

DCACHE_REQ_SID

Corresponding source ID of the requester

DCACHE_REQ_TID

Transaction identifier from the requester

DCACHE_REQ_NEED_RSP

*

* means don't care

As for any regular request, the request shall follow the VALID/READY handshake protocol described in

section 2.4.1.

For the sake of design simplification, this operation works as a memory read fence. That is, before han-
dling the operation, the HPDcache waits for all pending read misses to complete. Future versions of the
HPDcache could wait only for a pending read misses on the same set that is being invalidated.

If the given set and ways contains no valid cachelines, the operation does nothing. However it still works

as a memory read fence.

Regarding the latency of this operation, it depends on the time to serve all pending reads. Only one cycle
is needed to invalidate the given set and ways because the ways are invalidated simultaneously.
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5.4 Invalidate the entire cache

With this operation, all the cachelines in the HPDcache are invalidated.

To perform a complete invalidation of the HPDcache, the requester shall build the request as follows:

Signal Value

DCACHE_REQ_ADDR *

DCACHE_REQ_OP DCACHE_REQ_CMO
DCACHE_REQ_WDATA *

DCACHE_REQ_BE *

DCACHE_REQ_SIZE DCACHE_CMO_INVAL_ALL
DCACHE_REQ_UNCACHEABLE *

DCACHE_REQ_SID Corresponding source ID of the requester
DCACHE_REQ_TID Transaction identifier from the requester
DCACHE_REQ_NEED_RSP *

* means don't care

As for any regular request, the request shall follow the VALID/READY handshake protocol described in
section 2.4.1.

This operation works as a memory read fence. This is, before handling the operation, the HPDcache
waits for all pending read misses to complete.

Regarding the latency of this operation, it has two aggregated components:
¢ The time to serve all pending reads.

¢ One cycle per set implemented in the HPDcache (all ways of a given set are invalidated in simulta-
neously).
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5.5 Prefetch a cacheline given its physical address

With this operation, the cacheline corresponding to the indicated physical address is (pre-)fetched into
the HPDcache

To perform a prefetch, the requester shall build the request as follows:

Signal Value

DCACHE_REQ_ADDR *

DCACHE_REQ_OP DCACHE_REQ_CMO

DCACHE_REQ_WDATA *

DCACHE_REQ_BE *

DCACHE_REQ_SIZE DCACHE_CMO_PREFETCH

DCACHE_REQ_UNCACHEABLE *

DCACHE_REQ_SID Corresponding source ID of the requester

DCACHE_REQ_TID Transaction identifier from the requester

DCACHE_REQ_NEED_RSP Indicates if the requester needs an acknowledgement when the prefetch

of the cacheline is completed.

* means don't care

As for any regular request, the request shall follow the VALID/READY handshake protocol described in
section 2.4.1.

If the requested cacheline is already in the cache, at the moment the request is processed, this request
has no effect. If the requested cacheline is not present in the cache, the cacheline is fetched from the
memory and replicated into the cache.

When the prefetch transaction is completed, and the DCACHE_REQ_NEED_RSP signal was set to 1, an
acknowledgement is sent to the corresponding requester.
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6.1 Background

The Atomic Memory Operations (AMOs) are special load/store accesses that implements a read-modify-
write semantic. A single instruction is able to read a data from the memory, perform an arithmetical/-
logical operation on that data, and store the result. All this is performed as a single operation (no other
operation can come in between the read-modify-write operations).

These operations are meant for synchronization in multi-core environments. To enable this synchro-
nization, AMOs need to be performed on the Point-of-Serialization (PoS), point where all accesses from
the different cores converge. This is usually a shared cache memory (when multiple levels of cache are
implemented) or the external RAM controllers. Thus, the HPDcache needs to forward these operations
to the PoS through the NoC interface.

6.2 Supported AMOs

On the interface from requesters, the supported AMOs are the ones listed in table 2.14. The supported
AMOs are the ones defined in the atomic (A) extension of the RISC-V ISA specification: The RISC-V In-
struction Set Manual, Volume I: Unprivileged ISA[2].

6.3 Implementation

This cache does not implement a hardware cache-coherency protocol. Therefore, the software needs to
solve the cache obsolescence problem to ensure it reads the last value of the shared data. There are two
common ways of doing this:

1. Statically, by placing all shared data into uncacheable segments (never replicated in the HPDcache);
2. Dynamically, by explicitly invalidating local copies of shared data from the HPDcache.

The cache obsolescence problem applies to AMOs. As these operations are used for implementing syn-
chronization mechanism, the manipulated data is by nature shared and need to be coherent between
the different caches. The HPDcache implements two different modes for handling AMOs:

Replicated AMO mode

Forward the AMO to the PoS, and wait for the response with the old data. If the data of the target
address is replicated in the HPDcache, the HPDcache computes the new value locally, and up-
dates the target word in the corresponding cacheline. With this solution the modified word with
the AMO will be up to date (coherent) with respect to the value in memory. This solution needs
explicit treatment from the software. In particular, it requires that synchronization variables are
always written (and possibly read) using AMOs. For reading a shared variable, the software has two
possibilities: (1) send an AMO that does not modify the memory (e.g. AMOOR with bit-mask equal
to zero); (2) invalidate the local cacheline prior to issuing the load instruction.

Forbid AMO mode
This is a much more strict policy. AMOs can only be performed on uncacheable memory addresses.
If requests do not follow this rule, an exception is signalled from the cache to the corresponding
requester.

The HPDcache supports both modes, but only one can be active at any given time. The cfig_error_on_cacheable_amo
configuration bit selects the mode of operation. When this bit is set to 0, the Replicated AMO mode is
active. When this bit is set to 1, the Forbid AMO mode is active.

The HPDcache handle AMOs as non-allocating operations, regardless of the AMO mode described above.
This is, AMOs never fetch a replica of the target cacheline from the memory to the cache. If the target
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cacheline IS NOT replicated in the cache, the AMO modifies the memory. If the target cacheline IS repli-
cated in the cache, the AMO modifies both the memory and the cache.

6.4 AMO ordering

As specified in the RISC-V ISA specification [2], the base RISC-V ISA has a relaxed memory model. To
provide additional ordering constraints, AMOs (including LR/SC) specify two bits, aq and rl, for acquire
and release semantics.

The HPDcache always ignores aq and rlbits. It considers that they are always set. Hence, HPDcache han-
dles AMOs always as sequentially consistent memory operations. The HPDcache waits for all pending
read and write operations to complete before serving the AMO request.

This behavior implies that when the HPDcache forwards an AMO to the NoC, it will be the only pending
request from the HPDcache. In addition, no new requests from the requesters are served until the AMO
is completed.

6.5 LR/SC support

Load-Reserved (LR) and Store-Conditional (SC) are part of the Atomic (A) extension of the RISC-V ISA
specification [2]. These instructions allow "complex atomic operations on a single memory word or double-
word".

The HPDcache fully supports all the instructions of the A extension of the RISC-V ISA, including LR and
SC operations.

In the specification of these instructions in the RISC-V ISA document, some details are dependent to the
implementation. Namely, the size of the reservation set and the return code of a SC failure.

6.5.1 LR/SCreservation set

When arequester executes a LR operation, it "reserves" a set of bytes in memory. This set contains at least
the bytes solicited in the request but may contain more. RISC-V ISA defines two sizes for LR operations:
4 bytes or 8 bytes. The HPDcache reserves 8-bytes (double-word) containing the addressed memory
location regardless of whether the LR size is 4 or 8 bytes. The start address of the reservation set is a
8-bytes aligned address.

When the LR size is 8 bytes, the address is also aligned to 8 bytes (section 2.4.2). In this case, the reser-
vation set matches exactly the address interval defined in the request. When the LR size is 4 bytes, there
are two possibilities: (1) the target address is not aligned to 8 bytes. The start address of the reservation
set contains additional 4 bytes before the target address ; (2) the target address is aligned to 8 bytes. The
reservation set starts at the target address but contains additional 4 bytes after the requested ones.

In summary, in case of LR operation, the reservation set address range is computed as follows:

IDCACHE_REQ_ADDR/8] x 8 (start_address)

reservation_set =
{(LDC/—\CHE_REQ_ADDR/SJ x8)+8 (end_address)

When arequester executes a SC operation, the HPDcache forwards the operation to the memory ONLY
IF the bytes addressed by the SC are part of an active reservation set. If the SC accesses a smaller num-
ber of bytes that those in the active reservation set but within that reservation set, the SC is still forwarded
to the memory:.
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The HPDcache keeps an unique active reservation set. If multiple requesters perform LR operations, the
unique active reservation set is the one specified by the last LR operation.

After a SC operation, the unique active reservation set, if any, is invalidated. This is regardless whether
the SC operation succeeds or not.

6.5.2 SC failure response code

The RISC-V ISA [2] specifies that when a SC operation succeeds, the core shall write zero into the des-
tination register of the operation. Otherwise, in case of SC failure, the core shall write a non-zero value
into the destination register.

The HPDcache returns the status of an SC operation into the DCACHE_RSP_RDATA (table 2.3) signal of
the response interface to requesters. The following table specifies the values returned by the HPDcache
into the DCACHE_RSP_RDATA signal in case of SC operation.

Case Return value (status)
SC success 0x0000_0000
SC failure 0x0000_0001

Depending on the specified size (DCACHE_REQ_SIZE) in the request (table 2.3), the returned value is
extended with zeros on the most significant bits. This is, if the SC request size is 8 bytes, and the SC is a
failure, then the returned value is 0x0000_0000_0000_0001.

In addition, if the width of the DCACHE_RSP_RDATA signal is wider than the size of the SC request, the
return value is replicated CONF_DCACHE_REQ_WORDS (table 1.1) times.
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In order to predict future data accesses and reduce the data cache miss rate, the cache implements a
programmable hardware mechanism allowing to prefetch cachelines before they are actually requested.

The HPDcache implements a prefetcher that contains multiple prefetch engines. Each prefetch engine
works independently, and simultaneously. A round-robin arbiter at the output of the prefetcher allows
to select one prefetch request from one of the engines per cycle. This arbiter guarantees the correct
behavior when multiple prefetch engines are active.

Each engine, if activated, fetches a stream of cachelines. A stream is defined as a sequence of prefetch
requests. An engine reads one or multiple blocks of a given number of cachelines. The first block starts
at a given base cacheline. Between blocks, one can configure a given address offset (also known as the
stride).

The four parameters (base cacheline, number of cachelines in a block, number of blocks, and the stride)
of each stream (one per engine) are configured through dedicated CSRs.

7.1 Triggering

A given prefetcher engine starts operating when the following conditions are met:

1. Each engine implements an enable bit in its dedicated CSRs. This enable bit shall be set to 1 to
allow the triggering of a given prefetcher engine.

2. Each enabled engine (condition 1 is met), snoops on the requests ports from the requesters. If
there is a match between the issued address and the configured base cacheline of the engine, the
engine starts the prefetching.

Once an engine starts its operation, it does not snoop anymore the request ports. At that moment, it is-
sues a sequence of prefetch operations starting from base_cline, until the cacheline in the equation below.
When the last cacheline is reached, the behavior of the engine is described in the following section.

end_cline = base_cline + (Nblocks + 1) x (Stride +1)

A prefetch operation behaves as a read in the cache, but no data is expected in response by the prefetcher.
This means, that prefetch operations do not need to enable the data array of the cache (thus reducing
the energy consumption for this operation). Prefetch operations only access cache directory memories
to check if the requested cacheline is cached or if it needs to be fetched from the memory.

Programming note

As explained in this section, a requester needs to issue a load transaction within the base
cacheline of an engine to start its operation.

When the requester is a programmable processor core, an additional feature that could be
implemented in the core is a software prefetch instruction. This instruction would allow the
software to prefetch a given cacheline, without stalling the core while waiting the response
from the cache. Such instruction could also be used to start an enabled prefetcher engine.
In RISC-V cores, one possibility to implement this software prefetch instruction could be to
use the following:

lw x0, offset(rsi)

As the x0 register is always equal to zero, the data is dropped. Therefore, an efficient im-
plementation of this instruction in the core consists on forwarding the load to the L1 data
cache but do not wait for the response.
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7.2 Activation/Deactivation Policies

The prefetcher engines implement different automatic activation/deactivation policies:

Policies

Disarm when finished When the engine completes the configured stream, it is automati-
cally disabled.

Rearm when finished When the prefetcher completes the configured stream, it does not

disable. However, it stops and waits to be triggered again.

At that point, the base cacheline CSR of the engine saves the last
accessed cacheline plus the stride. This is, it saves the next address
to prefetch.

The CSRs for the number of blocks, cachelines per block and stride
keep their originally configured values.

Rearm and Cycle when fin- In this policy, the prefetch engine behaves as in the "Rearm when
ished finished" policy, but the base cacheline CSR is reset to the originally
configured value.

7.3 CSRs

Each prefetcher engine has three dedicated CSRs.

¢ Base cline (base cacheline) - cfig_hwpf_base_engine (see table 4.2)

63 6543210

Base cline |:|U|C|R|E‘

E: Enable bit

R: Rearm bit

C: Cycle bit

U: Upstream bit

Mode R C
Disarm when finished 0 X
Rearm when finished 1 0
Cycle and rearm when finished 1 1

e Parameters - cfig_hwpf_param_engine (see table 4.2)

63 48 47 32

’ Nblocks Nlines ‘

31 0

| — |

¢ Throttle - cfig_hwpf_throttle_engine (see table 4.2)

31 16 15 0

’ Ninflight Nwait ‘

Stride parameter
It is an unsigned, one-based (value + 1), 32-bits wide value. The stride is in number of cachelines.
This means that the stride is always a multiple of (DCACHE_CL_WIDTH/8) bytes.
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Nblocks parameter
It is an unsigned, one-based (value + 1), 16-bits wide value. This value corresponds to the number
of blocks to prefetch. The 16-bit value allows the prefetcher to prefetch up to 65536 blocks (of at
least one cacheline). This parameter is clearly over-dimensioned with respect to the usual capacity
of the HPDcache (e.g. 512, 64-byte, cachelines with a 32KB capacity).

Nlines parameter
It is an unsigned, one-based, 16-bits wide value. It indicates the number of cachelines within
blocks. As the number of bits is 16, the maximum number of cachelines in a given block is 65536.

Nwait parameter
It is an unsigned, one-based, 16-bits wide value. It defines the number of cycles (plus 1) between
two requests of the prefetcher engine. The zero value indicates that the engine can issue a request
every cycle.

Ninflight parameter
Itis an unsigned, zero-based, 16-bits wide value. It defines the maximum number of in-flight (sent
but not yet acknowledged) transactions from the prefetcher engine. This parameter allows to throt-
tle the memory bandwidth solicited by the prefetcher engine. The zero value indicates that the
number of in-flight transactions is unlimited.

U bit
When this upstream bit is set, prefetch operations targets the next level in the memory hierarchy.
In this case, upstream prefetch operations do not allocate cachelines in the L1 data-cache. These
are forwarded to the next memory level that can then prefetch the requested address. THIS BIT IS
NOT CURRENTLY IMPLEMENTED AND IGNORED.

C bit
This bit is only considered when the R bit (rearm) is also set. When this cycle bit is set, after the
prefetcher engine completes the prefetch stream, it resets the base cacheline to the originally con-
figured one (see section 7.2).

R bit
When this rearm bit is set, after the prefetcher engine completes the prefetch stream, it "rearms"
itself (remains enabled), and snoops for core requests (see section 7.2). The address it snoops after
it finishes depends on the Cycles (C) bit. If the C bit is set, the behavior is described here above. If
the C bit is unset, after the prefetcher engine finishes, the snoop address is set to end_cline.

There is also a global status register for the prefetcher to monitor the status of the different prefetcher

engines:

 Status register

63 48

47 33 32

36 35 34
‘ | P3 [ P2 [ P1 [ PO
20 19

busy | busy | busy | busy

31 30 16

’ Free | | Free Index ‘

15 4 3 2 1 0

‘ |PSen|P2en|P1 en|P0en‘

P0-P3 enable bits
Indicate if the corresponding prefetcher is enabled.
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Free index bits
Indicate the index (decimal) of the first available prefetcher from 0 to 3. The software can use
this information to easily compute the address offset of the configuration registers of the target
prefetcher engine.

Free bit
It is set when the Free Index is valid, this is, when there is effectively a free prefetcher.

PO-P3 busy bits
Indicate if the corresponding prefetcher is busy (it is enabled and active).

7.4 Prefetch Request Algorithm

Algorithm 7.1 shows how a prefetch engine calculates the address to prefetch and the operation of the
throttling mechanisms.

7.5 Prefetch Abort

It is possible for the user to abort an active prefetch sequence from an engine. To do that, the user can
reset to 0 the enable(E) bit in the base_cline CSR register of the corresponding prefetcher engine.

Such action, makes the corresponding target engine to stop its current sequence of prefetch requests.
If there were inflight not-yet-acknowledge requests from that engine, it will wait for the corresponding
acknowledgements. During this time, the prefetcher engine is not usable, and its corresponding busy bit
in the Status CSR is kept set to 1. While the busy bit is set to 1, any write in CSR registers of that prefetcher
engine has no effect on the engine behavior. However, the modified CSR registers will keep the written
values.

When all acknowledgements are received, the corresponding prefetcher engine has its busy bit set to 0.
All other CSR of the prefetcher engine keep their configured values. At this point, the prefetcher engine
is usable and can be reconfigured normally.
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const bit [63:0] LINES_PER_BLOCK = Nlines + 1;
const bit [63:0] BLOCK INCREMENT = Stride + 1;
bit [63:0] block_nline;

// Iterates over the blocks of cachelines
block_nline = Base_cline;
for (nb = 0; nb < (Nblocks + 1); nb++)
//  Iterates over the cachelines within each block.
for (nl = 0; nl < LINES_PER_BLOCK; nl++) {
/! Skip the first cacheline of the first block as it is already requested by the
//  request triggering the prefetcher
if ((nl == 0) & (nb == 0)) continue;

if (Ninflight > 0) {
/! Wait while the number of in-flight prefetch requests is equal to the configured
// threshold (Ninflight). This is a throttling mechanism.
/! The inflight counter is decremented by another process each time the prefetcher
/!l receives an acknowledgement for an inflight request.
while (inflight >= Ninflight) {
wait (1); // cycles
}
}

//  Send the prefetch operation for the calculated cacheline.
/! Cachelines are contiguous within a block.
prefetch_address ((block_nline + nl)*64);

/! The inflight counter is incremented each time the prefetcher sends a prefetch request.
inflight++;

/! Wait a given number of cycles between two prefetch requests.
// This is a throttling mechanism
wait (Nwait + 1); // cycles

}

// The first cacheline of a block is offset (defined by the Stride)
/! with respect to the previous block.
block_nline += BLOCK INCREMENT;

}

//If the cycle bit is not set, update the Base_cline with the
/! address that would follow the last accessed one.
if (!cfig.base_cline.c) {

Base_cline = block_nline;

}

Figure 7.1: Request issuing algorithm of prefetch engines
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A.1 RAM macros

This cache uses memory arrays in multiple subcomponents. When targeting ASIC/FPGA implemen-
tations integrating this cache, memory arrays shall be implemented using technology-specific SRAM
macros. In the case of FPGA implementations, this is less critical because synthesis tools for FPGA usually
select automatically embedded RAMs when possible.

Table A.1 summarises the instances of RAM macros implemented in the HPDcache. This table has:
1. The path in the RTL model where that memory array is found;

2. areference to the section that gives details about their dimensions, the number of instances and
their content;

3. the number of read/write ports;

4. the read/write latency.

Table A.1: Summary of RAM macros in the HPDcache

MSHR

RTLInstance <hpdcache_instance>.hpdcache_miss_handler_i.hpdcache_mshr_i.mshr_sram

Details Section 3.2.1
Latency 1 clock cycle (RW)
Ports 1RW

Cache Directory

RTL Instance <hpdcache_instance>.hpdcache_ctrl_i.hpdcache_memctrl_i.hpdcache_memarray_i.dir_sram[i]

Details Section 3.5.1
Latency 1 clock cycle (RW)
Ports 1RW

Cache Data

RTLInstance <hpdcache_instance>.hpdcache_ctrl_i.hpdcache_memctrl_i.hpdcache_memarray_i.data_sram[i]

Details Section 3.5.1
Latency 1 clock cycle (RW)
Ports 1RW

A.2 Implementations

A.2.1 EPI Accelerator and RHEA Chip

In the context of the European Processor Initiative (EPI) project, in the accelerator stream [4], this cache
is used as the L1 data cache for the VRP [5] accelerator that is integrated in both, the EPI accelerator
(EPACL1.5) test-chip and the RHEA chip.

The parameters of the cache are the following on those implementations:
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Capacity 32 KBytes

Sets 128

Ways 4

Line Size 64 bytes
Physical Address Width 49 bits

Write Policy Write-Through

Maximum Access width (Requester-side) 32 bytes per cycle
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