
Design and Implementation of a
single core RISC-V Central

Processing Unit

ISA : RV 32I

by Nikos Deligiannis

A thesis presented for the diploma of
Computer Science and Engineering

June 2019

University of Ioannina 2019 RISC-V 32I Implementation

Dedication

To my family and in the loving memory of my dear grandfather,
Nikos Deligiannis...

University of Ioannina 2019 RISC-V 32I Implementation

Acknowledgments

I would like to thank my thesis advisor, Aristides Efthymiou for all his help and
support. His door was always open whenever I needed some assistance or some
clarification on a certain matter.

Also, I deeply thank professor Chrysovalantis Kavousianos for providing me
with all the study material and his useful opinions on my work when they were
needed.

Last but not least, I would like to thank my family and friends for their
endless patience and support they’ve given me those past few months.

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Development . 2
1.3 Report Structure . 3

2 Background & Technical Information 4
2.1 Base ISA Overview . 4
2.2 ISA Extensions . 5
2.3 The RV32I . 5

2.3.1 Instruction Length Encoding 5
2.3.2 Base ISA Model . 5
2.3.3 Instruction and Immediate Formats 6
2.3.4 Assembler Mnemonics for Registers 7
2.3.5 The Instructions . 8

2.3.5.1 Integer Computational Instructions 8
2.3.5.2 Control Transfer Instructions 9
2.3.5.3 Load and Store Instructions 10

3 Design of the RV32I Machine 11
3.1 Instruction Fetch - IF . 12

3.1.1 Module’s I/O . 12
3.2 Instruction Decode - ID . 13

3.2.1 Module’s I/O . 14
3.2.2 Multiplexer Network . 14

3.2.2.1 Multiplexer Input 17
3.2.3 Register File . 20
3.2.4 Immediate Generator . 20
3.2.5 Adder . 21
3.2.6 Stall & Forward Control 22

3.2.6.1 Scenario A . 22
3.2.6.2 Scenario B . 23
3.2.6.3 Scenario C . 23
3.2.6.4 Stall Generation 23

3.3 Execute Stage - EXE . 25
3.3.1 Module’s I/O . 25
3.3.2 Adder / Subtractor . 26

3.3.2.1 Commands that Use The Module 28

University of Ioannina 2019 RISC-V 32I Implementation

3.3.3 Barrel Shifter . 28
3.3.3.1 Commands that Use The Module 30

3.3.4 Logic Module . 30
3.3.4.1 Commands that Use The Module 30

3.3.5 Branch Resolver . 31
3.3.6 SLT Module . 31
3.3.7 ALU Output . 32

3.4 Memory Stage - MEM . 33
3.4.1 Module’s I/O . 33
3.4.2 Byte Enable Module . 34
3.4.3 Load Masking Module . 35

3.5 Write Back - WB . 37
3.5.1 Forward Scenario D . 37

3.6 The Complete Pipeline . 39
3.6.1 ALU Input Selector . 41
3.6.2 Control Word Regroup Module 42
3.6.3 WB Selector . 42
3.6.4 The M4K Block Issue . 43

4 Evaluation of the RV32I Machine 44
4.1 Exploring The Official Tests . 44
4.2 Testing Procedure and Final Words 45

4.2.1 A Test Example . 45
4.2.1.1 About the Figure 4.1 47
4.2.1.2 About the Figure 4.2 47

4.2.2 Problems Found and Solved by Testing 48
4.2.2.1 The Branch and the Forwards 48
4.2.2.2 The Forward Path C 48

5 Conclusion and Future Work 49
5.1 Future Work . 49

List of Figures

2.1 RV32I Instruction Length Encoding 5
2.2 Instruction Types . 6
2.3 Immediate Types . 6

3.1 Instruction Fetch schematic . 12
3.2 Instruction Decode schematic . 13
3.3 Control Word Format . 17
3.4 Forwarding Paths . 22
3.5 Execute Stage schematic . 25
3.6 Overflow example . 26
3.7 Overflow prohibit example . 27
3.8 Adder/Subtractor module . 27
3.9 Barrel Shifter module. 29
3.10 Branch Predictor Module . 31
3.11 Memory Stage schematic . 33
3.12 Byte Offsets and ALU RES segments. 34
3.13 Write Back schematic . 37
3.14 Forward Path D schematic, . 38
3.15 RV32I schematic . 40
3.16 ALU Input Selector schematic . 41
3.17 Design problem due to the M4K blocks. 43

4.1 ADDI test #2. 45
4.2 ModelSim simulation of the ”ADDI” test #2. 46

1

Chapter 1

Introduction

1.1 Motivation

1.2 Development

1.3 Report Structure

RISC-V is an open-source hardware instruction set architecture (ISA), based
on established reduced instruction set computer (RISC) principles. The project
began in 2010 at the University of California, Berkeley. Nowadays, well known
enterprises in the hardware sector like NVIDIA and Western Digital have an-
nounced a plan to start using RISC-V processors in their future products.

1.1 Motivation

In the 21st century, the use of processors in smartphones, tablet computers and
Android/iOS devices in general, is following the RISC style architecture. This
is why we began looking into RISC and not other architectures (e.g. CISC) to
begin with. Being fascinated by the juvenileness of this specific ISA, we were
thrilled to do some research and start working with it. Also, we would like to see
how V HDL would stand up to the challenge since most architectures we could
find (e.g. BOOM) were developed using CHISEL, a Scala variant hardware
description language.

1.2 Development

The whole project was developed hierarchically using V HDL and every part
was designed, so that it could be synthesizable. In fact, most of the modules
we created for the needs of the project were also tested on Altera’s Cyclone II
- DE 2 FPGA Board. Concerning the evaluation methods used, we ran various
simulations using ModelSim and Quartus-II’s embedded simulator. Finally, the
complete design was successfully tested, using the official tests designated for
this ISA (RV 32I).

2

University of Ioannina 2019 RISC-V 32I Implementation

1.3 Report Structure

What follows is a brief technical introduction to the “world” of RISC-V and the
capabilities that come with it. Then, there will be an analytical presentation of
our design and implementation, which is (as mentioned before) the single-core
RISC-V 32I (Base ISA). Finally, there will be a chapter dedicated to how the
full design was tested, how some issues found while testing were resolved and
then, there will be a few words about future work and some improvements that
can be done.

3

Chapter 2

Background & Technical
Information

2.1 Base ISA Overview

2.2 ISA Extensions

2.3 The RV32I

2.1 Base ISA Overview

The RISC-V ISA is defined as a base integer ISA, which must be present in
any implementation, plus optional extensions to the base ISA. The base integer
ISA is very similar to that of the early RISC processors, except with no branch
delay slots and with support for optional variable-length instruction encodings.

The base integer ISA is named ”I” (prefixed by RV32 or RV64 depending on
integer register width) and contains integer computational instructions, integer
loads, integer stores and control-flow instructions. It is mandatory for all RISC-
V implementations.

4

University of Ioannina 2019 RISC-V 32I Implementation

2.2 ISA Extensions

There are various extensions to the Base ISA (”I”) such as:

Extension Symbol Extension Contents
“M” Integer Multiplication & Division
“A” Atomic Instructions
“F” Single-Precision Floating Point
“D” Double-Precision Floating Point
“Q” Quad-Precision Floating Point
“L” Decimal Floating Point
“C” Compressed Instructions
“B” Bit Manipulation
“J” Dynamically Translated Languages
“T” Transactional Memory
“P” Packed SIMD Instructions
“V” Vector Operations
“N” User-Level Interrupts

Table 2.1: ”ISA Extensions”

Therefore, various architectures can come up as a mix of some of those exten-
sions. For example, an integer base ISA plus the extensions ”M”,”A”,”F”,”D”
is given the abbreviation ”G” and provides a general-purpose scalar instruc-
tion set. The RV 32G and RV 64G (64 simply means 64-bit registers) are the
considered to be the default architectures.

2.3 The RV32I

2.3.1 Instruction Length Encoding

The base RISC-V ISA (RV32I) has fixed-length 32-bit instructions that must
be naturally aligned on 32-bit boundaries. All the 32-bit instructions in this
ISA have their lowest two bits set to 11.

Figure 2.1: RV32I Instruction Length Encoding

2.3.2 Base ISA Model

There are 31 general-purpose registers x1-x32, which hold integer values. Reg-
ister x0 is hardwired to the constant 0. There is one additional user-visible
register: the program counter pc holds the address of the current instruction.

5

University of Ioannina 2019 RISC-V 32I Implementation

2.3.3 Instruction and Immediate Formats

There are four core instruction formats (R/I/S/U). All are fixed 32 bits in length
and must be aligned on a four-byte boundary in memory. There are a further
two variants of the instruction formats (B/J) based on the handling of immedi-
ates.

Figure 2.2: Instruction Types

The only difference between the S and B formats is that the 12-bit immediate
field is used to encode branch offsets in multiples of 2 in the B format. Instead
of shifting all bits in the instruction-encoded immediate left by one in hardware,
as is conventionally done, the middle bits (imm[10:1]) and sign bit stay in fixed
positions, while the lowest bit in S format (inst[7]) encodes a high-order bit in
B format.

Similarly, the only difference between the U and J formats is that the 20-bit
immediate is shifted left by 12 bits to form U immediates and by 1 bit to form
J immediates. The location of instruction bits in the U and J format imme-
diates is chosen to maximize overlap with the other formats and with each other.

Figure 2.3: Immediate Types

6

University of Ioannina 2019 RISC-V 32I Implementation

The fields of Figure 2.3 are labeled with the instruction bits (instr[y]) used
to construct their value. Sign extension always uses inst[31].

Labeled as rd is the destination register, meaning the register at which the
result of the operation will be stored and as rs1, rs2 (if any) are the registers
(operands) that will be used. The funct7, funct3 and opcode fields will be used
for the decoding of the command and for the generation of the signals needed
for its processing, while the imm[x : y] fields will be used for the assembly of
the command’s immediate.

2.3.4 Assembler Mnemonics for Registers

In this subsection, we will list the assembler mnemonics for the x registers and
their role in the standard calling convention. Every register in RV 32I is 32-bit
wide. This listing is taken from the RISC-V User-Level ISA.

Register ABI Name Description
x0 zero Hard-wired zero
x1 ra Return address
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5 t0 Temporary/alternate link register
x6-7 t1-2 Temporaries
x8 s0/fp Saved register/frame pointer
x9 s1 Saved register
x10-11 a0-1 Function arguments/return values
x12-17 a2-7 Function arguments
x18-27 s2-11 Saved registers
x28-31 t3-6 Temporaries

Table 2.2: Assembler mnemonics for RISC-V integer registers

7

University of Ioannina 2019 RISC-V 32I Implementation

2.3.5 The Instructions

2.3.5.1 Integer Computational Instructions

Most integer computational instructions operate on XLEN (= 32) bits of values
held in the integer register file. Integer computational instructions are either
encoded as register-immediate operations using the I-type format or as register-
register operations using the R-type format. The destination is register rd for
both register-immediate and register-register instructions.
Note that there is no special instruction set support for overflow checks on in-
teger arithmetic operations in the RV32I ISA. Overflow checks can be cheaply
implemented using branches.
The commands on the tables below follow the color-code of Figure 2.2 and Fig-
ure 2.3
[A] Integer Register-Immediate Instructions

Command Operation Syntax
ADDI Addition between imm and rs1 addi rd, rs1, imm

SLTI If rs1 < imm then rd← 1 else rd← 0 slti rd, rs1, imm

SLTIU Same as SLTI, but UNSIGNED sltiu rd, rs1, imm

ANDI Bitwise AND between rs1 and imm andi rd, rs1, imm

ORI Bitwise OR between rs1 and imm ori rd, rs1, imm

XORI Bitwise XOR between rs1 and imm xori rd, rs1, imm

SLLI Shift left logical of rs1 by given shift amount (imm) slli rd, rs1, imm

SRLI Shift right logical of rs1 by given shift amount(imm) srli rd, rs1, imm

SRAI Shift right arithmetic of rs1 by given shift amount(imm) srai rd, rs1, imm

LUI rd← imm lui rd, imm

AUIPC rd← pc + imm auipc rd, imm

Notes:
→ The arithmetic operations that include addition ignore overflow scenarios as mentioned before.

The immediates used in those commands are I-type Immediates and they are generated as shown at
Figure 2.3. Shifts by a constant are encoded as a specialization of the I-type format. The operand to
be shifted is in rs1, and the shift amount is encoded in the lower 5 bits of the I-immediate field.
→ Those two instructions are of the U-type and use the respective Immediate types as well. LUI

stands for ”Load Upper Immediate” while AUIPC stands for ”Add Upper Immediate To PC”. Again
one can recur at Figure 2.3 for further details on the subject of Immediate generation.

Table 2.3: Register-Immediate Instructions

8

University of Ioannina 2019 RISC-V 32I Implementation

[B] Integer Register-Register Instructions

Command Operation Syntax
ADD Addition between rs1 and rs2 add rd, rs1, rs2

SUB Subtraction between rs1 and rs2 sub rd, rs1, rs2

SLT If rs1 < rs2 then rd← 1 else rd← 0 slt rd, rs1, rs2

SLTU Same as SLT, but UNSIGNED sltu rd, rs1, rs2

AND Bitwise AND between rs1 and rs2 and rd, rs1, rs2

OR Bitwise OR between rs1 and rs2 or rd, rs1, rs2

XOR Bitwise XOR between rs1 and rs2 xor rd, rs1, rs2

SLL Shift left logical of rs1 by given shift amount (rs2) sll rd, rs1, rs2

SRL Shift right logical of rs1 by given shift amount (rs2) srl rd, rs1, rs2

SRA Shift right arithmetic of rs1 by given shift amount (rs2) sra rd, rs1, rs2

Notes:
The shift amount is now held in the lower 5 bits of register rs2.

Table 2.4: Register-Register Instructions

[C] NOP Instruction

The NOP instruction does not change any user-visible state, except for ad-
vancing the pc. NOP is encoded as ADDI x0, x0, 0.

2.3.5.2 Control Transfer Instructions

The RV32I ISA provides two types of control transfer instructions: uncondi-
tional jumps and conditional branches. Control transfer instructions in RV32I
do not have architecturally visible delay slots.

[A] Unconditional Jumps

Command Operation Syntax
JAL GOTO pc + imm and rd← pc + 4 jal rd, imm

JALR GOTO (rs1 + imm)[31 : 1]&0 and rd← pc + 4 jalr rd, rs1, imm

Notes:
→ JAL (Jump and Link) is a J-type instruction. J-immediate encodes a signed offset in multiples of

2 bytes. The offset is sign-extended and added to the pc, to form the jump target address. Jumps can
therefore target a ±1MiBrange. JAL stores the address of the instruction following the jump (pc+4)
into register rd.
→ JALR (Jump and Link Register) uses the I-type encoding. The jump target address is obtained

by adding the 12-bit signed I-immediate to the register rs1, then setting the least-significant bit of the
result to zero. The address of the instruction following the jump (pc+4) is written to register rd.

Table 2.5: Uncoditional Jumps

9

University of Ioannina 2019 RISC-V 32I Implementation

[B] Conditional Branches

All branch instructions use the B-type instruction format. The 12-bit B-
immediate encodes signed offsets in multiples of 2 and is added to the current
pc to give the target address. The conditional branch range is ±4KiB.

Command Operation Syntax
BEQ if rs1 = rs2 then JUMP beq rs1, rs2, imm

BNE if rs1 6= rs2 then JUMP bne rs1, rs2, imm

BLT if rs1 < rs2 then JUMP blt rs1, rs2, imm

BLTU Same as BLT, but UNSIGNED bltu rs1, rs2, imm

BGE if rs1 ≥ rs2 then JUMP bge rs1, rs2, imm

BGEU Same as BGE, but UNSIGNED bgeu rs1, rs2, imm

Notes:
The commands BGT, BGTU, BLE and BLEU can be synthesized by reversing the operands to BLT,

BLTU, BGE and BGEU respectively.

Table 2.6: Conditional Branches

2.3.5.3 Load and Store Instructions

RV32I is a load-store architecture, where only load and store instructions access
memory and arithmetic instructions only operate on CPU registers. RV32I
provides a 32-bit user address space that is byte-addressed and little-endian.
The effective address in both cases is obtained by adding register rs1 to the
sign-extended 12-bit offset.

Command Operation Syntax
LW rd←MEM [31 : 0] lw rd, imm(rs1)

LH rd←MEM [31 : 16] or MEM [15 : 0] lh rd, imm(rs1)

LHU Same as LH, but UNSIGNED lhu rd, imm(rs1)

LB rd← MEM [31 : 24] or MEM [23 : 16] or MEM [15 : 8] or

MEM [7 : 0]

lb rd, imm(rs1)

LBU Same as LB, but UNSIGNED lbu rd, imm(rs1)

SW MEM ← rs2 sw rs2, imm(rs1)

SH MEM [31 : 16] or MEM [15 : 0] ← rs2[15 : 0] sh rs2, imm(rs1)

SB MEM [31 : 24] or MEM [23 : 16] or MEM [15 : 8] or

MEM [7 : 0] ← rs2[7 : 0]

sb rs2, imm(rs1)

Notes:
The choosing of the byte that will be written or loaded in any case is done by the 2 least-significant

bits of the calculated effective address.
→ In case of LH/LB operations, the loaded value will be sign-extended up to 32-bits while in case of

LHU/LBU, the value will be zero-filled up to 32-bits.
→ Always the least-significant bits of the register rs2 are being stored at SH and SB operations.
MEM[X:Y] means to read/write a specific D$ cell. X and Y point to the bits that should be read-

/written.

Table 2.7: Loads and Stores

10

Chapter 3

Design of the RV32I
Machine

3.1 Instruction Fetch - IF

3.2 Instruction Decode - ID

3.3 Execute Stage - EXE

3.4 Memory Stage - MEM

3.5 Write Back - WB

3.6 The Complete Pipeline

In this chapter, we will present one by one the CPU’s pipeline stages and also
the final design. Every part and every module that was created (via V HDL)
was thoroughly tested before moving to the next one. The whole design consists
of five pipeline stages, which are the Instruction Fetch, the Instruction Decode,
Execute Stage, Memory Stage and Write Back Stage.

11

University of Ioannina 2019 RISC-V 32I Implementation

3.1 Instruction Fetch - IF

The Instruction Fetch (IF) module consists of a simple memory block (M4K
- block)1 that is used to emulate the Instruction Cache (I$) in our system.
We chose for the I$ to have 1024 slots, which are 32-bit wide (since we are
implementing a 32-bit architecture). So the total capacity of the memory is
4096 B.

Figure 3.1: Instruction Fetch schematic

IF is responsible for fetching the proper instruction (MEMORY WORD)
from I$. This is done by isolating some bits of the program counter (PC) and
using them as address for the I$. Since the memory has 1024 slots, we need
log2(1024) = 10 bits to iterate through all of them and so, we use the PC[11..2]
bits for this work. Last but not least, the M4K Memory used was automatically
generated by Quartus’s II Mega-Wizard Plug-In Manager.

3.1.1 Module’s I/O

• Inputs:

1. CLOCK : System clock.

2. STALL : Pipeline control signal (1-bit).Its complement is used as Enable
signal for I$.

3. PC : Program counter (32-bit).

• Outputs:

1. MEMORY WORD : Word fetched from I$ (32-bit).

2. PC : Program counter (32-bit).

1The use of M4K was mandatory in our case, since we wanted the design to be synthesizable.
Having that in mind, the only embedded memory available on our FPGA board was the
M4K RAM memory type

12

University of Ioannina 2019 RISC-V 32I Implementation

3.2 Instruction Decode - ID

This is one of the most important and resourceful modules of this design. The
Instruction Decode (ID) module is responsible for one thing among others; to
“recognize” the command that was fetched on the previous cycle and activate
all the signals that are needed for the command to be successfully processed.

Figure 3.2: Instruction Decode schematic

Designing the ID module was an iterative process, due to the nature of the
task that is asserted to it. While being the second part of the pipeline, its devel-
opment suggests a deep knowledge of what will be done in one, two, and three
clock cycles later for every(!) command that is currently being decoded. In this
stage, we also detect true dependencies (RAWs) and handle them accordingly
to maximize the performance, when it is needed. Also, ID is being equipped
with a simple Adder, so that it can calculate either the return address of a JALR
(PC + 4), or the target address of a JAL/BRANCH (PC + IMMEDIATE)
according to the control-transfer command that is currently being decoded.

Once again, we will follow the color-code of Figure 3.2, so one can navigate
through the design and the description.

13

University of Ioannina 2019 RISC-V 32I Implementation

3.2.1 Module’s I/O

• Inputs:

1. CLK : System clock.

2. RST : System reset signal (1-bit).

3. FETCHED WORD: Feed from IF ; word read from I$ (32-bits). 1

4. WRITE BACK ADDR : Feed from Write Back stage; rd register ad-
dress (5-bits).

5. WRITE BACK DATA : Feed from Write Back stage; value (result)
that must be written to rd (32-bit).

6. PC : Feed from IF stage; Program Counter (32-bits). 1

7. RD IN EXE : Feed from Execute stage; rd register address of the pre-
vious command (5-bit).

8. RD IN MEM : Feed from Memory stage; rd register address of the com-
mand before the previous one (5-bits).

9. LOAD IN EXE: Control signal from Execute stage; Alerts the ID mod-
ule if there is a LOAD command in Execute (1-bit).

• Outputs:

1. RD ADDRESS : The address of the rd register (5-bits).

2. RS1 V ALUE : Value of the rs1 register (32-bits).

3. RS2 V ALUE : Value of the rs2 register (32-bits).

4. CONTROL WORD : Control-Signals for the following stages. (18-bits).

5. FORWARD A : Control signal for Forward Path A (2-bits).

6. FORWARD B : Control signal for Forward Path B (2-bits).

7. FORWARD C : Control signal for Forward Path C (1-bit).

8. TARGET ADDR OR PC + 4 : (32-bits). 2

9. IMMEDIATE : Value of the Command’s Immediate (32-bits).

10. PC : Program Counter (32-bits).

3.2.2 Multiplexer Network

Being tasked with the work of decoding the previously fetched instruction
(word), we have to figure out a way to detect which one of the possible in-
structions it is. After the successful decode of the word, we have to provide
all(!) the mandatory control signals for the next pipeline stages, to make sure
that all the necessary actions for the process of the now decoded instruction will
be done.

1These signals come from a Pipeline Register.
2See Section 3.2.5 for more information about this signal

14

University of Ioannina 2019 RISC-V 32I Implementation

At Section 2.3.3, we listed all the instructions that belong to our RV 32I imple-
mentation. Also, Figure 2.2 shows that all the instruction types have their 7
LSBs1 dedicated for the opcode field. Also, in combination with Figure 2.1, we
conclude that there is no point to process the two LSBs of any word that has
to be decoded.

The first step for the process is to understand how the commands are being
encoded by the Assembler; and to do so we used the official RISC-V Instruction
Set Manual. The encoding of every command is displayed below at Table 3.1.
Marked with bold style is all the information the Multiplexer Network uses to
determine the identity of the command.

Observing the encoding information displayed on Table 3.1, we came to the
following conclusions:

• According to their opcode2 bits, the commands are either stand-alone or
belong in a group with other commands of similar type or functionality.

• The groups are the following five:

– Loads

– I-type arithmetics

– Stores

– R-type commands

– Branches

• Most of the commands that belong to a group, have a “unique” funct3
3-bit code.

• Some of the grouped commands have the same funct3 code, but they have
a different funct7[5] bit.

In conclusion the Multiplexer Network is responsible of selecting the correct
control signal to pass to the following pipeline stages. Each multiplexer’s input
is a static control signal, which dictates what operations must be done in every
stage for the successful process of the command.

1Least Significant Bits
2Except the two LSBs

15

University of Ioannina 2019 RISC-V 32I Implementation

imm[31:12] rd 0110111 “LUI”

imm[31:12] rd 0010111 “AUIPC”

imm[20&10:1&11&19:12] rd 1101111 “JAL”

imm[11:0] rs1 000 rd 1100111 “JALR”

imm[12&10:5] rs2 rs1 000 imm[4:1&11] 1100011 “BEQ”
imm[12&10:5] rs2 rs1 001 imm[4:1&11] 1100011 “BNE”
imm[12&10:5] rs2 rs1 100 imm[4:1&11] 1100011 “BLT”
imm[12&10:5] rs2 rs1 101 imm[4:1&11] 1100011 “BGE”
imm[12&10:5] rs2 rs1 110 imm[4:1&11] 1100011 “BLTU”
imm[12&10:5] rs2 rs1 111 imm[4:1&11] 1100011 “BGEU”

imm[11:0] rs1 000 rd 0000011 “LB”
imm[11:0] rs1 001 rd 0000011 “LW”
imm[11:0] rs1 010 rd 0000011 “LW”
imm[11:0] rs1 100 rd 0000011 “LBU”
imm[11:0] rs1 101 rd 0000011 “LHU”

imm[11:5] rs2 rs1 000 imm[4:0] 0100011 “SB”
imm[11:5] rs2 rs1 001 imm[4:0] 0100011 “SH”
imm[11:5] rs2 rs1 010 imm[4:0] 0100011 “SW”

imm[11:0] rs1 000 rd 0010011 “ADDI”
imm[11:0] rs1 010 rd 0010011 “SLTI”
imm[11:0] rs1 011 rd 0010011 “SLTIU”
imm[11:0] rs1 100 rd 0010011 “XORI”
imm[11:0] rs1 110 rd 0010011 “ORI”
imm[11:0] rs1 111 rd 0010011 “ANDI”

0000000 shamt rs1 001 rd 0010011 “SLLI”
0000000 shamt rs1 101 rd 0010011 “SRLI”
0100000 shamt rs1 101 rd 0010011 “SRAI”

0000000 rs2 rs1 000 rd 0110011 “ADD”
0100000 rs2 rs1 000 rd 0110011 “SUB”
0000000 rs2 rs1 001 rd 0110011 “SLL”
0000000 rs2 rs1 010 rd 0110011 “SLT”
0000000 rs2 rs1 011 rd 0110011 “SLTU”
0000000 rs2 rs1 100 rd 0110011 “XOR”
0000000 rs2 rs1 101 rd 0110011 “SRL”
0100000 rs2 rs1 101 rd 0110011 “SRA”
0000000 rs2 rs1 110 rd 0110011 “OR”
0000000 rs2 rs1 111 rd 0110011 “AND”

Notes:
”&” is the concatenation operator.

Table 3.1: RV32I Command Encoding

16

University of Ioannina 2019 RISC-V 32I Implementation

Starting from right to left, there is a 32 → 1 multiplexer. This multiplexer
is used to select the correct group of the command (if the command belongs to
a group) or the stand-alone command itself (e.g. “AUIPC”). This is done by
using the opcode[6..2] bits of the word as selector. Since the opcode[6..2] bits
alter from command to command in a non-sequential manner, we use all five of
them and end up with a 25 = 32→ 1 multiplexer.

Previous to that, there are five 8 → 1 multiplexers, which use the three
funct3 bits (if any) of the word to select a specific command inside a group.
Note that since we have five different command groups, we use five multiplexers
in this layer.

Some of the commands, belong to the same group and also have the same
funct3 code (e.g. “ADD” - “SUB”). To separate them, we utilize the funct7[5]
bit of the word which changes in that case. So using this bit as selector, we
attach to the network three 2→ 1 multiplexers and so, we cover all the possible
scenarios of decoding.

3.2.2.1 Multiplexer Input

As mentioned above, the input of every multiplexer is a static, hard-typed con-
trol signal of 20 bits of the following format.

Figure 3.3: Control Word Format

Depicted with blue color at Figure 3.3 there are four groups of bits. These
are the bits that concern each pipeline stage. The bit 0 is used also at ID stage
along with bits 20..18, but it is appended later as Figure 3.2 shows and is not
hard-typed in every input of the multiplexers like the rest of the control signal
bits. It is also used for pipeline control.

17

University of Ioannina 2019 RISC-V 32I Implementation

• IMMGEN : Immediate Genaration

– 000 : I-type Immediate,

– 001 : S-type Immediate.

– 010 : B-type Immediate.

– 011 : U-type Immediate.

– 100 : J-type Immediate.

• WB OP : Write Back operation. 0 if the command doesn’t require a Write
Back action, 1 if it does.

• MEM U OP : Memory Unsigned Operation. 0→ NO, 1→ Y ES.

• MEM OP : Memory Operation.

– 000 : LB

– 001 : LH

– 010 : LW

– 100 : SB

– 101 : SH

– 110 : SW

– 111 : MEM-Free operation.

• ALU OP: ALU Operation

– 00 : Addition.

– 01 : Subtraction.

– 10 : Logic Operation.

– 11 : Shift Operation.

• SHIFT/ADDER/LOGIC OP: Since bits [9..8] determine which ALU module
will be used there is no problem using the same bits [11..10] to represent different
operations in different ALU modules.

– Shift Module:

∗ 00 : Shift Right Logical.
∗ 01 : Shift Left Logical.
∗ 10 : Shift Right Arithmetic.

– Adder Module:

∗ 0X : Signed Addition or Subtraction.
∗ 1X : Unsigned Addition or Subtraction.

– Logic Module:

∗ 00 : And.
∗ 01 : Or.
∗ 10 : Xor.

• INV & EQ/LT: Used for resolving a branch case. 1

• BRANCH: 0→ the command is not a Branch, 1→ the command is a Branch.

• SLT: 0→ the command is not SLT, 1→ the command is SLT.

• PC: 0→ PC is not required for calculations. 1→ PC is required for calculations.

• JUMP: 0→ the command is not a JUMP. 1→ command is a JUMP.

• LUI: 0→ the command is not a LUI. 1→ the command is a LUI.

• JALR: 0→ the command is not a JALR. 1→ the command is a JALR.

1Refer to subsection 3.3.5 for further analysis of those two bits

18

University of Ioannina 2019 RISC-V 32I Implementation

Command Control Word

LB 000-1-0-000-0X-00-X-X-0-0-1-0-0-0-0

LH 000-1-0-001-0X-00-X-X-0-0-1-0-0-0-0

LW 000-1-0-010-0X-00-X-X-0-0-1-0-0-0-0

LBU 000-1-1-000-0X-00-X-X-0-0-1-0-0-0-0

LHU 000-1-1-001-00-00-X-X-0-0-1-0-0-0-0

ADDI 000-1-X-111-0X-00-X-X-0-0-1-0-0-0-0

SLLI 000-1-X-111-01-11-X-X-0-0-1-0-0-0-0

SLTI 000-1-X-111-0X-01-X-X-0-1-1-0-0-0-0

SLTIU 000-1-X-111-1X-01-X-X-0-1-1-0-0-0-0

XORI 000-1-X-111-10-10-X-X-0-0-1-0-0-0-0

SRLI 000-1-X-111-00-11-X-X-0-0-1-0-0-0-0

SRAI 000-1-X-111-10-11-X-X-0-0-1-0-0-0-0

ORI 000-1-X-111-01-10-X-X-0-0-1-0-0-0-0

ANDI 000-1-X-111-00-10-X-X-0-0-1-0-0-0-0

SB 001-0-0-100-0X-00-X-X-0-0-1-0-0-0-0

SH 001-0-0-101-0X-00-X-X-0-0-1-0-0-0-0

SW 001-0-0-110-0X-00-X-X-0-0-1-0-0-0-0

ADD XXX-1-X-111-0X-00-0-0-0-0-0-0-0-0-0

SUB XXX-1-X-111-0X-01-0-0-0-0-0-0-0-0-0

SLL XXX-1-X-111-01-11-0-0-0-0-0-0-0-0-0

SLT XXX-1-X-111-0X-01-0-0-0-1-0-0-0-0-0

SLTU XXX-1-X-111-1X-01-0-0-0-1-0-0-0-0-0

XOR XXX-1-X-111-10-10-0-0-0-0-0-0-0-0-0

SRL XXX-1-X-111-00-11-0-0-0-0-0-0-0-0-0

SRA XXX-1-X-111-10-11-0-0-0-0-0-0-0-0-0

OR XXX-1-X-111-01-10-0-0-0-0-0-0-0-0-0

AND XXX-1-X-111-00-10-0-0-0-0-0-0-0-0-0

BEQ 010-0-X-111-0X-01-0-1-1-0-0-0-0-0-0

BNE 010-0-X-111-0X-01-1-1-1-0-0-0-0-0-0

BLT 010-0-X-111-0X-01-0-0-1-0-0-0-0-0-0

BGE 010-0-X-111-0X-01-1-0-1-0-0-0-0-0-0

BLTU 010-0-X-111-1X-01-0-0-1-0-0-0-0-0-0

BGEU 010-0-X-111-1X-01-1-0-1-0-0-0-0-0-0

AUIPC 011-1-X-111-0X-00-X-X-0-0-1-1-0-0-0

LUI 011-1-X-111-XX-00-X-X-0-0-1-1-0-1-0

JALR 000-1-X-111-01-00-X-X-0-0-1-0-1-0-1

JAL 100-1-X-111-0X-00-X-X-0-0-1-1-1-0-0

Notes:
“X” stands for ”Don’t Care”. It could be either 1 or 0.

Table 3.2: Commands and their Control-Words

This encoding is the result of many iterations, due to the fact that while being
in the second pipeline stage (ID), we had to think about what will be needed to be
done in the next pipeline stages. Finally, with respect to the encoding, we present the
control-words (multiplexer inputs) for every instruction in our ISA.

19

University of Ioannina 2019 RISC-V 32I Implementation

3.2.3 Register File

The register file consists of 32 registers which are 32-bit wide as our architecture dic-
tates. They all have the function of read and write(parallel load) except for one,
the register 0 which has the value 0 hardwired inside it. This value cannot be altered,
meaning the register cannot do a parallel load operation. All other registers have also
a RESET and a LOAD control signal, which are activated only when a global1 reset
happens.

As shown in Figure 3.2, the register file is between a 5→ 32 decoder and two 32→ 1
multiplexers. The decoder is used for the WRITE operations and the multiplexers
are used for the READ operations. Almost every command in our ISA has 5 bits
([11..7])2dedicated for the register rd, which is the destination register, meaning the
register in which the result of the command will be written into. In our pipeline archi-
tecture, this happens at the fifth (Write Back) stage. So, when a command reaches the
Write Back stage and if it is a command that has to write a result into a register, then
the Write Back provides the WRITE BACK ADDR and WRITE BACK DATA
signals back to the register file. The rd’s address is connected to the decoder and
then the proper LOAD signal is activated, so that the register that translates to rd’s
address will be ready for a WRITE operation.

The two multiplexers are used to provide the operands’ rs1 and rs2 (if any) val-
ues for the Execute Stage. The first multiplexer provides the rs1 value, by using the
instruction word’s bits[19..15]2 as selector, while the second multiplexer provides the
rs2 value, by using the instruction word’s bit[24..20]2 as selector. Every multiplexer
input is paired with every register’s output. For example, Reg0 → I0, Reg1 → I1,
Reg2 → I2 etc.

Of course, not every command requires a rs1 or rs2 value. In this case the register
file will provide two values that will be random and that will not be needed. Later,
we add further logic components to resolve this issue.

3.2.4 Immediate Generator

The Immediate Generator module is responsible for providing the immediate that
is required, according to the instruction that is being decoded. It uses the three
bits[20..18] of the control word(Figure 3.3) and according to them, formats the proper
immediate, by rearranging and manipulating the bits of the fetched word, as Figure
2.3 shows. When this procedure is over, the bits[20.18] of the control word are no
longer needed and thus they are removed of the control-word, before it leaves the ID
stage. The immediate generator module implements the following algorithm:

1When the CPU starts running, we assume that there will be a short reset to initialize all the
pipeline components

2You can refer to Figure 2.2 for any clarifications needed.

20

University of Ioannina 2019 RISC-V 32I Implementation

Algorithm 1: Immediate Generator

input : CONTROL WORD[20..18] and FETCHED WORD
output: IMMEDIATE

1 IMM TYPE ← CONTROL WORD[20..18] ;
2 if IMM TYPE == ”000” then
3 IMMEDIATE = I-type Immediate, f(FETCHED WORD) ;

4 else if IMM TYPE == ”001” then
5 IMMEDIATE = S-type Immediate, f(FETCHED WORD) ;

6 else if IMM TYPE == ”010” then
7 IMMEDIATE = B-type Immediate, f(FETCHED WORD) ;

8 else if IMM TYPE == ”011” then
9 IMMEDIATE = U-type Immediate, f(FETCHED WORD) ;

10 else if IMM TYPE == ”100” then
11 IMMEDIATE = J-type Immediate, f(FETCHED WORD) ;

12 else
13 IMMEDIATE = XXX..X ;
14 end

3.2.5 Adder

In the the case of Uncoditional Jumps, two calculations are required. The calculation
of the target address and the storing of the next instruction’s address, the return ad-
dress (PC + 4), to register rd. This translates into two addition operations that must
be done in the event of those commands. All the computational force in a pipeline
usually is entrusted to the pipeline’s ALU1. In our pipeline ALU lays in the third stage,
the Execute stage. So we would have to equip the ALU module with two Adders since
when a jump is imminent, two additions should be done. To relieve some workload of
the ALU’s design, we decided to equip the ID module with one of those two adders,
an adder that will be responsible only for the calculation of the target address of the
unconditional jumps and branches.

In theory, this would work fine, since all the necessary operands are available at
ID stage. After further investigating the JALR command though, we see that the
target address is calculated in a different way. Instead of PC + IMM , JALR dictates
that the target address is calculated as PC + RS1. So this means that first, we have
to access the register file to acquire the one of the two operands and then do the
addition operation, since the PC value is already available (from the IF stage). In
practice, we found that due to some propagation delays, we should handle the JALR
case differently.

1Arithmetic and Logic Unit

21

University of Ioannina 2019 RISC-V 32I Implementation

What we did to resolve this, is to treat the JAL and JALR commands in ID like
this:

• If the command is JAL or BRANCH then:

– Calculate the TARGET ADDRESS as PC + IMMEDIATE.

• If the command is JALR then:

– Calculate the RETURN ADRESS as PC + 4.

This is achieved by adding a 2→ 1 multiplexer that selects by CONTROL WORD[0]
(JALR) either the IMMEDIATE or the constant +4. So for JAL, we leave the cal-
culation of the jump’s return address to the Execute stage and for JALR, we leave
the calculation of the jump’s target address to the Execute stage.

3.2.6 Stall & Forward Control

This is a module that was added later on ID and it is responsible for detecting whether
a stall or a forwarding is required. Forwarding (or Bypassing) is the counter-measure
of the true dependency/hazard RAW1, which is the only threat in our system, since
we do not support OOO2.

Figure 3.4: Forwarding Paths

The module is responsible for handling Forwards A,B, and C, which are shown at
Figure 3.4, while forward D3 is being handled by some external logic. So, there are
three main RAW scenarios that require resolution.

3.2.6.1 Scenario A

1 OP A Reg X , Reg A , Reg B
2 OP B Reg Y , Reg X , Reg C

Listing 3.1: Forward Path A Example

This scenario concerns the ID and Execute stages. OP A writes its result to
Reg X. Then OP B requires Reg X’s value as rs1 operand. Without the forwarding
path, we would have to stall for at least two clock cycles and wait for OP A to reach
the Write Back stage. We know that the value which will be written at at Reg X will
be available at the end of Execute stage. So, instead of stalling for two clock cycles,
we activate the Forward Path A and transfer the value needed to OP B.

1Read After Write
2Out Of Order execution
3We will analyze the Forward D later.

22

University of Ioannina 2019 RISC-V 32I Implementation

3.2.6.2 Scenario B

1 OP A Reg X , Reg A , Reg B
2
3 OP B Reg Y , Reg X , Reg C

Listing 3.2: Forward Path B Example

This scenario concerns the ID and Memory stages. Once again, OP A writes its
result to Reg X and then, after one command that is in-between them, OP B requires
this value as an operand. If not for the Forward Path B, we would have to stall again
for one clock cycle and wait for OP A to reach the Write Back stage.

3.2.6.3 Scenario C

1 LOAD Reg X , IMM(Reg A)
2 STORE Reg X , IMM(Reg B)

Listing 3.3: Forward Path C Example

This scenario concerns only the Memory stage. It only occurs when there is a
STORE command after a LOAD command, of whom the later wishes to write in the
memory the register value, that the first has loaded. We would normally have to stall
for one clock cycle again, but with the Forward Path C we can overcome this issue.

3.2.6.4 Stall Generation

1 LOAD Reg X , IMM(Reg A)
2 OP A Reg A , Reg X , Reg B

Listing 3.4: Stall Scenario

In this case, we have to stall the OP A and those who follow, because the LOAD
command has to reach the Memory stage and then, activate the Forward Path B so
that it can provide the needed value. This happens due to the nature of the LOAD
commands, which have their result ready at the end of Memory stage and not at the
Execute stage like the other computational commands.

23

University of Ioannina 2019 RISC-V 32I Implementation

Algorithm 2: Stall and Forward Control

input : RS1[4..0],RS2[4..0], RD IN EXE[4..0], RD IN MEMORY [4..0],
LOAD IN EXE, CONTROLWORD[20..18]

output: FWDA[2], FWDB[2], FWDC, STALL

1 /* Initialization */
2 FWDA[2] = {0, 0};
3 FWDB[2] = {0, 0};
4 FWDC = 0;
5 STALL = 0 ;

6 /* Identify the Type of the Command in ID */
7 COMMAND IN ID ← f(CONTROL WORD[20..18]) = (R/S/U/B/J) ;

8 /* Equality Check between RS1,RS2 and RD in EXE and MEM */
9 if RS1 == RD IN EXE AND RS1 6= REG0 then

10 FWD A RS1← 1;
11 end
12 if RS2 == RD IN EXE AND RS2 6= REG0 then

13 FWD A RS2← 1;
14 end
15 if RS1 == RD IN MEM AND RS1 6= REG0 then

16 FWD B RS1← 1;
17 end
18 if RS2 == RD IN MEM AND RS2 6= REG0 then

19 FWD B RS2← 1;
20 end

21 /* Check if the command in ID has an RS1 , RS2 register on its type */
22 if COMMAND IN ID 6= U/J − type a then
23 FWDA[0] = FWD A RS1;
24 FWDB[0] = FWD B RS1;

25 else
26 FWDA[0] = 0;
27 FWDB[0] = 0;

28 end

29 if COMMAND IN ID = S/B/R− type b then
30 FWDA[1] = FWD A RS2;
31 FWDB[1] = FWD B RS2;

32 else
33 FWDA[1] = 0;
34 FWDB[1] = 0;

35 end
36 if LOAD IN EXE = 1 AND COMMAND IN ID = S − type then
37 FWDC = 1;
38 end
39 if LOAD IN EXE = 1 AND (FWD A RS1 OR FWD A RS2) then
40 STALL = 1;
41 end

aIf the Command in ID is of U or J type then it does not have an rs1 register, hence we must
not activate a forward signal

bOnly the Stores, Branches and R-type commands have an rs2 register and so, a forward
signal for rs2 is required only in their case

24

University of Ioannina 2019 RISC-V 32I Implementation

3.3 Execute Stage - EXE

The Execute is the third stage in our pipeline. This is where all the computational
force of our system is located. It consists of three main parts. The Adder/Subtractor,
the Barrel Shifter and the Logical Module. Furthermore, this is the stage in which we
decide whether to follow a Branch or not.

Figure 3.5: Execute Stage schematic

3.3.1 Module’s I/O

• Inputs:

1. V ALUE A : The first of two operands (32-bits). 1

2. V ALUE B : The second operand (32-bits). 1

3. CTRL WORD : Control Signals from ID (9-bits1).
– bits[8..7]: ADD OP/SHIFT OP/LOGIC OP.
– bits[6..5]: ALU OP.
– bit[3]: EQ/LT.
– bit[2]: BRANCH.
– bit[1]: SLT.
– bit[0]: LUI.

• Outputs:

1. T OR NT : Branch condition result (1-bit).

2. ALU RES : (32-bit).

1These signals come from the ALU Input Selector module (3.6.1)

25

University of Ioannina 2019 RISC-V 32I Implementation

Note that we only use 9 out of the total 18 control bits which were generated by
the ID stage. This happens because we simply do not have any use for the other
bits, hence we use a logic - circuit between the pipeline registers to separate them
respectively, meaning the pipeline stage that they must be addressed to, and then in
every clock cycle distribute them to the designated location.

3.3.2 Adder / Subtractor

This module is responsible for doing Signed and Unsigned addition and subtraction.
It is in its core a ripple-carry architecture, in which we added a few customizations of
our own. Besides the typical modification that the ripple-carry architecture requires
so it can do a subtraction (2’s complement on B operand), as one can notice in Figure
3.5 the module’s inputs have a 2 → 1 multiplexer, which is responsible for the extra
bit[33] (which we added), and is controlled by the select bit[8], which in case of addi-
tion or subtraction stands for Signed/Unsigned operation.

Normally, as mentioned before, we do not care for Overflow scenarios and we
leave this to the programmer’s hands. But there is a case that an overflow could be
disastrous for us, an overflow in signed subtraction operations. If two numbers are
subtracted and their signs are different, then overflow occurs if and only if the result
has the same sign as the subtrahend1. For example, lets say we have a module that
subtracts 3-bit numbers. In this module we insert as minuend2 the number 011(+3)
and as subtrahend the number 101(−3).

Figure 3.6: Overflow example

This problem should not bother us, since we leave this issue to the programmer.
But, in some cases like the case of a BGE or BLT command, this fault could be
catastrophic. In order to evaluate if we must take or not the jump, we do a subtraction
and then check for the difference’s sign to decide. The problem mentioned above would
make us decide mistakenly the outcome of the branch command. The MSB of the 3-bit
result is 1, which wrongly implies a negative number.

1What is being subtracted.
2What is being subtracted from.

26

University of Ioannina 2019 RISC-V 32I Implementation

Since the sign is the most important information that we might loose with the
overflow issue, we overcome this by adding one extra bit to our operands. Instead of
subtracting 32-bit numbers, we sign-extend the values up to 33-bits and then contin-
uing with the operation without any risks of sign alteration at the results. With the
same numbers as operands, we attach this logic to the previous example.

Figure 3.7: Overflow prohibit example

With respect to the logic that was analyzed above, we use a 33-bit Adder/Subtrac-
tor in our ALU, that does Signed operations by using sign-extension up to 33-bits and
Unsigned operations by using zero-fill up to 33-bits. Since we add 1 extra bit to our
module for signed actions, we have to utilize it properly for the unsigned ones. Hence,
we use zero-fill instead for all the Unsigned operations, so that the result will not be
corrupted. The two 2→ 1 multiplexers are responsible for the sign-extension/zero-fill
and then the selected value is concatenated to the operands’ MSB1.

Since our architecture is 32-bit, we cannot simply continue with 33-bit values in
our pipeline. The result of the Adder/Subtractor gets cropped down to 32-bits, while
the 33rd bit is being used by other modules (e.g BRANCH RESOLV ER) for further
computations.

Figure 3.8: Adder/Subtractor module

1Most Significant Bit.

27

University of Ioannina 2019 RISC-V 32I Implementation

3.3.2.1 Commands that Use The Module

With respect to the sequential order that the Table 3.1 declares, here is a list of the
commands that utilize the Adder/Subtractor module.

Command Reason Comment

AUIPC IMMEDIATE + PC -

JAL PC + 4 Next command’s address

JALR PC + RS1 Target address

BRANCHES RS1 − RS2 Equality/Inequality check

LOADS RS1 + IMMEDIATE Effective address

STORES RS1 + IMMEDIATE Effective address

ADDI RS1 + IMMEDIATE -

SLTI[U] RS1 − IMMEDIATE The sign of the result will be the value for rd1

ADD RS1 + RS2 -

SUB RS1 − RS2 -

SLT[U] RS1 − RS2 Same as SLTI[U]

Table 3.3: Commands that use the Adder/Subtractor

3.3.3 Barrel Shifter

The barrel shifter is a digital circuit that can shift a data word by a specified number
of bits 2 in just 1 clock cycle without the use of any sequential logic, only pure combi-
natorial logic. The way we implemented it, is as a sequence of multiplexers where the
output of one multiplexer is connected to the input of the next multiplexer, in a way
that depends on the shift distance. Generally, the number of multiplexers required
for an n-bit word is nlog2(n); in our case, we have 32-bit words, hence normally we
would need 32log2(32) = 160 multiplexers in total.

Our system has 32-bit words, which can be shifted up to 32 slots left or right. So,
to represent the shift amount (shamt) we need log2(32) = 5 bits. According to those
five bits, we separate the shifting operation into stages:

• Stage #1: Shift by 16; controlled by shamt[4].

• Stage #2: Shift by 8 ; controlled by shamt[3].

• Stage #3: Shift by 4 ; controlled by shamt[2].

• Stage #4: Shift by 2 ; controlled by shamt[1].

• Stage #5: Shift by 1 ; controlled by shamt[0].

In every shifting stage, we need multiplexers to represent each bit of the data word
which is being shifted, so every stage needs 32 multiplexers. This is how the number
160 comes up. But, our barrel shifter module must be able to do right arithmetic, right
logical and left logical shifting operations. We need 160 multiplexers for just right or
left shift. To be able to do all three kinds of shift, we have to use more circuitry; in
fact, we used [2× 32log2(32)] + 1 = 321 multiplexers:

1If RS1 − IMMEDIATE < 0 then the result will have bit[33] (sign) = 1. So we can easily
handle this command by only looking at the result’s sign

2Shift amount (shamt).

28

University of Ioannina 2019 RISC-V 32I Implementation

• For each stage, we use two multiplexers instead of one (2×).

• We have five stages for every bit of the shifting word (32log2(32)).

• We use one extra multiplexer for right arithmetic shifts (+1).

The barrel shifter requires 2 control bits to do one of the shifts. Note the MSB
signifies the Arithmetic shift, while the LSB the left or right shift.

Shift Type Control Word

Right 0-0

Left 0-1

Right Arithmetic 1-0

ERROR 1-1

Figure 3.9: Barrel Shifter module.

All the theory mentioned above is now aggregated into Figure 3.9. There are
five shifting stages and for every bit we use two multiplexers, where the top one is
responsible for handling the left shifts and the bottom one the right and the right
arithmetic shifts.

29

University of Ioannina 2019 RISC-V 32I Implementation

3.3.3.1 Commands that Use The Module

The commands that utilize the barrel shifter module are the following:

Command Reason Comment

SLLI RS1 << IMM -

SRLI RS1 >> IMM -

SRAI RS1 >> IMM Vacant positions are filled with MSB

SLL RS1 << RS2[5..0] -

SRL RS1 >> RS2[5..0] -

SRA RS1 >> RS2[5..0] Vacant positions are filled with MSB

Table 3.4: Commands that use the Barrel Shifter

3.3.4 Logic Module

The logic module is the simplest part in our ALU. It consists of three large logical
gates; the AND, the OR and the XOR, which are 32-bit wide. The two inputs for
each gate are the two operands of the ALU, A and B. The module’s output is selected
from a 4 → 1 multiplexer, which has two control bits as selector, the bits[12..11] of
the control word (Figure 3.3).

3.3.4.1 Commands that Use The Module

The commands that utilize the logic module are the following:

Command Reason Comment

XORI RS1⊕ IMM -

ORI RS1 + IMM -

AND RS1 ∧ IMM -

XOR RS1⊕RS2 -

OR RS1 + RS2 -

AND RS1 ∧RS2 -

Table 3.5: Commands that use the Logic Module

30

University of Ioannina 2019 RISC-V 32I Implementation

3.3.5 Branch Resolver

The Branch Resolver module is responsible for determining whether we should follow
or not a BRANCH command. Note, that our design does not posses a branch pre-
diction unit and so, we deal with branch cases in Execute stage. This means, that
if the branch is finally Taken that we have to flush the previous two pipeline stages
(IF ,ID), because the commands that have been fetched are not valid anymore.

It takes as input three control bits and the result of the Adder/Subtractor module.
It works according to the following truth table:

Command BEQ INVERT LOGIC BRANCH

BEQ 1 0 1

BNE 1 1 1

BLT 0 0 1

BGE 0 1 1

Table 3.6: Branch Command Encoding

Figure 3.10: Branch Predictor Module

The general idea for the development of this module was the following:

A relop B⇐⇒ A−B < 0 1

We determine equalities and inequalities via subtraction and then, we extract the
result (Adder/Subtractor feed) and decide, with the circuit of Figure 3.10, if we must
Take or Not the branch. Reminder; the result from the ADD/SUB RES is 33 bits
and not 32, due to the overflow avoidance strategy we chose.

3.3.6 SLT Module

This module is dedicated purely to the Set Less Than (SLT) command. It is simply
takes the sign bit of the Adder/Subtractor module and zero-fills it up to 32-bits. So
the output of the module will be either 0 or 1, which are the two options for the SLT
command’s result. For example:

• SLT REG X, 1, 2 :: 1− 2 = −1 (bit[33] = 1), so the result is 1.

• SLT REG X, 2, 1 :: 2− 1 = +1 (bit[33] = 0), so the result is 0.

1We can easily check the result (sign - bit) of the subtraction’s result

31

University of Ioannina 2019 RISC-V 32I Implementation

3.3.7 ALU Output

All the results of the stage’s modules are accumulated to the 4→ 1 multiplexer (Figure
3.5). The multiplexers inputs are selected according to the control word bits[10..9].
Furthermore, there are two extra 2 → 1 multiplexers, which are responsible for the
LUI and SLT commands.

The Load Upper Immediate (LUI) command does not require any computational
effort from our ALU unit. It simply stores a U-Immediate to the rd register. So, we
encoded it accordingly and used the same ALU OPCODE with the Additions. The
first 2→ 1 multiplexer (with control bit[1] as selector) is responsible for providing this
U-Immediate in the case of LUI commands.

In a similar way, we used another 2→ 1 multiplexer (with control bit[5] as selector)
for the SLT command, but in this case, since the command uses the Adder/Subtrac-
tor module to perform a subtraction operation, we used the ALU OPCODE of the
Subtraction operations.

32

University of Ioannina 2019 RISC-V 32I Implementation

3.4 Memory Stage - MEM

The fourth stage in our pipeline is the Memory stage. This stage is used exclusively
by LOAD and STORE commands. Here lies another M4K memory block, which
emulates the Data Cache (D$) of our system. Usually, in a modern CPU, the D$
is organized as a hierarchy of more cache levels (L1,L2, etc.), but we used a simple
memory block for the needs of our project. Also, this is the place where global variables
in a piece of code are being stored (.data field). For more information concerning the
M4K memory blocks we used (I$ and D$), you can read Altera’s Internal Memory
(RAM and ROM) User Guide and Intel’s Embedded Memory User Guide.

Figure 3.11: Memory Stage schematic

The D$ we used has 128 cells, which are 32-bit wide. Hence, to iterate through
all of them, we need log2(128) = 7 bits. Those 7 bits are acquired from the result
that ALU provides to the pipeline. We isolate from those 32-bits of the result, the
nine (9) LSBs, of whom the bits[1..0] are used as byte offset in case of a byte or a half
load/store operation. Last but not least, the MEMOP control signal 1 is 111 for the
commands that are neither STORE nor LOAD and so, we use a reductive NAND
gate to generate an ENABLE signal for our D$ 2.

3.4.1 Module’s I/O

• Inputs:

1. CLOCK : Global Clock.

2. ALU RES : LSBs from the ALU to be used as address and offset (9-bits). 3

3. RS2 V ALUE : The value that will be written (32-bits).3

4. CTRL WORD : Control Signals from ID (4-bits).3

– bit[3]: Signed or Unsigned Load.

– bits[2..0]: Memory Operation (see page 18 for details).

• Outputs:

1. LOADED WORD : Word read from D$ (32-bits).

1Refer to Table 3.2 for more information about the command encoding.
2Also, MEMOP[2] is used as a Write Enable signal because its 0 for LOADS
3Those signals are actually split into two categories. Those who concern the LOADs and those who

concern the STOREs. The STORE signals are bypassing the Pipeline Register, while the LOAD

signals do not.

33

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/an/an207.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/an/an207.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_ram_rom.pdf

University of Ioannina 2019 RISC-V 32I Implementation

3.4.2 Byte Enable Module

The M4K Memory block allows the user to write in specific bytes inside a memory
cell (BY TEEN). In our case, since we have 32-bit cells, we can divide the memory
cell into four bytes which can be written individually. Furthermore, we can modify
two bytes inside a memory cell. This means, that we can write either on bits[31..16]
or bits[15..0] of a memory cell with the SH (Store Half) command.

To achieve that, we must also have a number that will imply the byte or the bytes
that will be written inside the memory cell. With respect to everything mentioned
above, we use the two LSBs of the address value (ALU RES) as an iterator for every
memory cell. For referring to a byte half, we use the bit[1] of the ALU RES and for
bytes, we use the bits[1..0] as Figure 3.12 depicts.

Figure 3.12: Byte Offsets and ALU RES segments.

This introduction was mandatory to explain the functionality of the Byte Enable
Module, which is dedicated to STORE commands. It takes as input the value of the
register RS2 and the two LSBs of the ALU RES, along with the three MEMOP
control bits, which represent the STORE command type. Then, according to the the
value of the MEMOP and the two LSBs, it generates the proper BY TEEN signal
1. After the signal is generated, the module reforms RS2’s value according to the
STORE type. If the command is SB, then the reformed word is rs2[7..0]× 4 If the
command is SH, then the reformed word is rs2[15..0]× 2. If the command is SW, then
word remains the same. This means that we can only write either the lowest byte or
lowest-half of the RS2 value if not all of it. Algorithm 3 demonstrates the behavior of
Byte Enable Module;

1Refer to the Altera’s Internal Memory (RAM and ROM) User Guide for further information
about the Byte Enable option of the M4K Block

34

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/an/an207.pdf

University of Ioannina 2019 RISC-V 32I Implementation

Algorithm 3: Byte Enable Module

input : CONTROL WORD[2..0], RS2 V ALUE[31..0] and ALU RES[6..0]
output: BY TEEN [3..0] and REFORMED RS2 V ALUE[31..0]

1 MEMOP ← CONTROL WORD[1..0] ;
2 PAD ← ALU RES[1..0] ;
3 BY TE ← RS2 VALUE[7..0] ;
4 HALF ← RS2 VALUE[15..0] ;

5 /* Store Byte Case */

6 if MEMOP == ”00” then
7 if PAD == ”00” then
8 BYTEEN = ”0001”;
9 else if PAD == ”01” then

10 BYTEEN = ”0010”;
11 else if PAD == ”10” then
12 BYTEEN = ”0100”;
13 else if PAD == ”11” then
14 BYTEEN = ”1000”;

15 REFORMED RS2 VALUE = BYTE & BYTE & BYTE & BYTE; a

16 /* Store Half Case */

17 else if MEMOP == ”01” then
18 if PAD[1] == ”0” then
19 BYTEEN = ”0011”;
20 else if PAD[1] == ”1” then
21 BYTEEN = ”1100”;

22 REFORMED RS2 VALUE = HALF & HALF;

23 /* Store Word Case */

24 else if MEMOP == ”10” then
25 BYTEEN = ”1111”;
26 REFORMED RS2 VALUE = RS2 VALUE; // No Modification

27 else
28 BYTEEN = ”XXXX”;

a: “&” is the Concatenation Operator.

3.4.3 Load Masking Module

Besides the primary LW (Load Word) command, the RV32I ISA supports Signed and
Unsigned Loads for Bytes and Halves, while the M4K memory block can only provide
a word, which is read from one of its memory cells. So we must design a circuit that
will be responsible for making all those Load commands viable. The Load Masking
Module is responsible for taking as input the word, which has just been read from the
D$ and modifying it accordingly as the Load type command instructs. The module
was designed behaviorally and here is the algorithm that represents it:

35

University of Ioannina 2019 RISC-V 32I Implementation

Algorithm 4: Load Masking Module

input : CONTROL WORD[3..0], MEMORY V ALUE[31..0] and
ALU RES[1..0]

output: LOADED WORD[31..0]

1 MEMOP ← CONTROL WORD[1..0] ;
2 PAD ← ALU RES ;
3 SIGNED/UNSIGNED ← CONTROL WORD[3] ;
4 A←MEMORY V ALUE[31..24];
5 B ←MEMORY V ALUE[23..16];
6 C ←MEMORY V ALUE[15..8];
7 D ←MEMORY V ALUE[7..0];

8 /* Load Byte Case */

9 if MEMOP == “00” then
10 /* Signed */ if SIGNED/UNSIGNED == ”0” then
11 if PAD == ”00” then
12 LOADED WORD = SE(MEMORY VALUE[7]) & D; a

13 else if PAD == ”01” then
14 LOADED WORD = SE(MEMORY VALUE[15]) & C;
15 else if PAD == ”10” then
16 LOADED WORD = SE(MEMORY VALUE[23]) & B;
17 else if PAD == ”11” then
18 LOADED WORD = SE(MEMORY VALUE[31]) & A;

19 /* Unsigned */ else if SIGNED/UNSIGNED == ”1” then
20 if PAD == ”00” then
21 LOADED WORD = ZF(MEMORY VALUE[31..8]) & D; b

22 else if PAD == ”01” then
23 LOADED WORD = ZF(MEMORY VALUE[31..8]) & C;
24 else if PAD == ”10” then
25 LOADED WORD = ZF(MEMORY VALUE[31..8]) & B;
26 else if PAD == ”11” then
27 LOADED WORD = ZF(MEMORY VALUE[31..8]) & A;

28 /* Load Half Case */

29 if MEMOP == ”01” then
30 /* Signed */
31 if SIGNED/UNSIGNED == “0” then
32 if PAD[1] == ”0” then
33 LOADED WORD = SE(MEMORY VALUE[15]) & CD;
34 else if PAD[1] == ”1” then
35 LOADED WORD = SE(MEMORY VALUE[31]) & AB;

36 /* Unsigned */
37 else if SIGNED/UNSIGNED == “1” then
38 if PAD[1] == ”0” then
39 LOADED WORD = ZF(MEMORY VALUE[31..16]) & CD;
40 if PAD[1] == ”1” then
41 LOADED WORD = ZF(MEMORY VALUE[31..16]) & AB;

42 else
43 /* Load Word Case (Default) */
44 LOADED WORD = MEMORY VALUE;

a: “SE” stands for Sign Extension.
b: “ZF” stands for Zero Fill.

36

University of Ioannina 2019 RISC-V 32I Implementation

3.5 Write Back - WB

The Write Back stage is the final and simplest stage of our pipeline. It is the stage,
which signifies the completion of a command. It gathers the data that must be written
to the command’s RD register (if any), along with the RD’s address and sends this
information back to the Register File, which is located at the ID stage.

Figure 3.13: Write Back schematic

The write back data can either be the result of the ALU, if it is a computa-
tional command, or the result of the MEM stage, if it is a LOAD command. Some
commands, for example, all the STOREs do not have a destination register so the
WriteBack stage has no use for them. This is why we use a 2 → 1 multiplexer, so
for every instruction that has no rd register, we provide the address of the x0 register,
which will do nothing, since, as we mentioned before, the register x0 cannot be written
and its hardwired to the constant 0. The proper input of the multiplexer is selected
by the control bit WB OP , which was previously generated at ID stage.

3.5.1 Forward Scenario D

Previously, at page 22, we analyzed the Forwarding/Bypassing paths of our pipeline.
We covered Forward of type A,B and C. But there is one extra forwarding that must
happen, when we encounter the following Scenario:

1 OP A Reg X , Reg A , Reg B
2
3
4 OP B Reg Y , Reg X , Reg C

Listing 3.5: Forward Path D Example

This forward path is being handled by some external, pipeline logic that does not
belong to the Stall and Forwarding Predictor Module of the ID stage. Normally,
this would not be an issue, if we could write and then instantly read from the same
register inside the Register File. But, when we tested the full design without the For-
ward Path D, we confronted some data corruption cases, since in some tests the Write
and Read of the same register were successful and in others were not.

37

University of Ioannina 2019 RISC-V 32I Implementation

This Forward Path is implemented by simply using two 2→ 1 multiplexers, which
are controlled by the AND reduced result of the XNOR between the WB ADDRESS
and the RS1/2 segments taken from the fetched I$ word. If the result is 1, either for
RS1 or RS2, then the WB DATA value is passed directly to the Pipeline Register,
by using the two multiplexers (one for RS1 and one for RS2). Their inputs are the
respective RS values, provided by the ID and the WR DAT value provided by WB
stage. Note, that those two multiplexers are not depicted properly at Figure’s 3.15
sketch1due to space limitations.

Figure 3.14: Forward Path D schematic,

This is a more detailed representation of the path, so that the reader can now
easily navigate to the complete pipeline design. For obvious reasons, the EXE and
MEM stages, along with the signals that do not participate at the Forward D path
were not included at the sketch.

1There is a cloud that generates the FWD D signal and also we imply that it also carries the
value that must be forwarded.

38

University of Ioannina 2019 RISC-V 32I Implementation

3.6 The Complete Pipeline

We presented with great detail the five basic stages of our system. In this section, we
will analyze the complete pipeline of the RV32I ISA, and all the components that were
previously mentioned as external/pipeline modules. Also, we will discuss about the
peculiarity of the M4K memory blocks and how they were a “problem” to our initial
design plans.

Lets begin by introducing the extra, yet mandatory components for a pipeline
architecture; the pipeline registers. Shown in Figure 3.15, there are four registers
(A/B/C/D), one for each data transaction between the CPU modules. They were im-
plemented using behavioral architectures based on the standard D flip flop logic. All
four registers have a reset RST 1signal (the same signal we mentioned for the previous
modules), which is positive edge triggered and occurs when the CPU starts working
(on clock cycle #0). All registers have as many inputs as the number of output signals
the previous2CPU module provides, plus some signals that are transfered from one
stage to the next one 3. Registers A and B have also two extra control signals, the
FLUSH4 and STALL signals, which occur every time we encounter a RAW hazard
(STALL) and whenever we have a conditional or unconditional jump case (FLUSH).

Furthermore, there is one extra register, the PC (Instruction Pointer), which is
a simple 32-bit register that holds the memory address of the next instruction that
would be fetched. After providing the address to IF module, its value gets updated
accordingly:

• Either provides the address of the next instruction (PC + 4).

• Or in case of Jump/Branch provides the target address of the Jump.

Secondly, we will make it easy for one to navigate into Figure 3.15 since it has a lot of
detail and it may seem confusing. So we will begin by pairing colors to the respective
purposes and functionalities that they bespeak:

• The PC register and the next PC signal (NPC) are drawn with purple color.

• Figure’s 3.4 color code for forwarding paths (FWD A/B/C/D) is the same in
Figure 3.15.

• The STALL and FLUSH control signals are depicted with deep blue color.

• The CONTROL WORD and all its forks are depicted with orange color.

• The CLOCK and RST signals are depicted with dark red color.

Lastly, there are three extra pipeline modules that we created to make the signal
distribution and the workload for every stage less and easier. These modules are the
ALU INPUT SELECTOR, the CONTROL WORD REGROUP module and the WB
SELECTOR respectively.

1It is used to initialize the whole system.
2For example Pipeline Register A has two data inputs (I$ WORD and PC VALUE).
3For example, in EXE stage there are two signals transfered directly to register C from
register B (RD ADDRESS and RS2 VALUE).

4Empties all the data the register currently has.

39

University of Ioannina 2019 RISC-V 32I Implementation

Figure 3.15: RV32I schematic

40

University of Ioannina 2019 RISC-V 32I Implementation

3.6.1 ALU Input Selector

The EXE stage, which has the Arithmetic and Logic Unit, simply requires two
operands and one control word to operate. The problem here is that there are many dif-
ferent commands in our ISA, which require different operations and different operands,
hence, we should either attach more circuitry to the ID module (which is already
overloaded with functions) or design an outer-pipeline stage module dedicated for this
work, which is what we finally chose.

The ALU Input Selector module takes as input the RS1 and RS2 values from the
Register File, the PC and IMMEDIATE from the ID stage, along with some control
bits, the JALR, JUMP , PC and IMM 1 and decides according to the following
schematic which are going to be operands A and B that will finally go to the EXE
stage.

Figure 3.16: ALU Input Selector schematic

The first two 2 → 1 multiplexers are selecting either the RS1/2 values or their
alternatives, which for RS1 is the PC value (the commands that do not have an
RS1 register in their type, e.g “AUIPC”) and for RS2 is the IMMEDIATE that
is generated at ID (the commands that do not have an RS1 register in their type,
e.g “ADDI”). The inputs are selected by the corresponding control bits. The third
2→ 1 multiplexer is used to implement the theory we developed at sub-section 3.2.5,
in which we segregate the work of the ID’s Adder and EXE’s ALU that has to be
done in JALR and JAL/BRANCH cases.

1Redirect to page 18 for more information about the meaning of the control bits.

41

University of Ioannina 2019 RISC-V 32I Implementation

3.6.2 Control Word Regroup Module

As we indicated before, the ID stage generates a control-word, which is necessary for
the following pipeline stages, since it dictates which operations they must undertake.
This control-word though, is large and its not completely useful in every stage. To
facilitate our design, we designed the Control Word Regroup Module, which given the
control-word generated from ID, it divides it into smaller ones, which are addressed
to the respective pipeline stages. It also provides the essential control bits to the ALU
Input Selector module. The module’s behavioral architecture is described by the fol-
lowing simple algorithm:

Algorithm 5: Control Word Regroup

input : CONTROL WORD[17..0]
output: ALU SELECTOR WORD[3..0], ALU CONTROL WORD[8..0],

MEM AND WB CONTROL WORD[4..0]

1 /* Bits for ALU Selector */
2 JALR← CONTROL WORD[0] ;
3 JUMP ← CONTROL WORD[2] ;
4 PC ← CONTROL WORD[3] ;
5 IMM ← CONTROL WORD[4] ;

6 /* Bits for ALU */
7 SHIFT/ADDER/LOGIC OP ← CONTROL WORD[12..11] ;
8 ALU OP ← CONTROL WORD[10..9] ;
9 INV LOGIC ← CONTROL WORD[8] ;

10 EQ||LT ← CONTROL WORD[7] ;
11 BRANCH ← CONTROL WORD[6] ;
12 SLT ← CONTROL WORD[5] ;
13 LUI ← CONTROL WORD[1] ;

14 /* Bits for MEM and WB */
15 MEM U OP ← CONTROL WORD[16] ;
16 MEM OP ← CONTROL WORD[15..13] ;
17 WB OP ← CONTROL WORD[17] ;

18 ALU SELECTOR WORD ← JALR & JUMP & PC & IMM ;
19 ALU CONTROL WORD ← SHIFT/ADDER/LOGIC OP & ALU OP &

INV LOGIC & EQ||LT & BRANCH & SLT & LUI;
20 MEM AND WB CONTROL WORD ←MEM U OP & MEM OP & WB OP ;

We do not separate at this point further the control-word for MEM and WB
stages, because they have many bits in common. The separation will occur later
inside the pipeline registers.

3.6.3 WB Selector

This module is actually a 2 → 1 multiplexer, which decides if the value that must
be written back to the Register File’s RD register should be the result from EXE’s
ALU, or MEM ’s D$. This is done by and-reducing the control-bits of MEMOP and
selecting with it either the ALU result (if the result is 1) or the D$ read word (if the
result is 0):

if (MEMOP [2] ∧MEMOP [1] ∧MEMOP [0])′ == 1→ D$ WORD
if (MEMOP [2] ∧MEMOP [1] ∧MEMOP [0])′ == 0→ ALU RES

42

University of Ioannina 2019 RISC-V 32I Implementation

3.6.4 The M4K Block Issue

The memory type of our caches is the M4K block. We chose this type of memory,
because we want our design to be fully synthesizable and since we have already worked
with Altera’s DE-2 FPGA board, this is the only memory we could use and actually
test. But with this selection, a design problem appeared; these memory blocks have
by default registered inputs and optionally registered outputs. This means for stages
IF and MEM , who have the caches embedded into them, that for every instruction
that passes through them, we would need two clock cycles and not one, as we initially
had planned.

Figure 3.17: Design problem due to the M4K blocks.

So, for the ID and MEM pipeline stages, we had to figure out a solution to this
problem; having 2 clock cycles for some pipeline stages and one clock cycle for the
rest, was considered unacceptable by us. The plan is for every pipeline stage to be
operative in 1 clock cycle. So, we simply ignored the PC register in the case of IF
stage and we ignored the PIPELINE REGISTER C in the case of MEM stage.
So every signal that is directed either towards the I$ or the D$ is coming directly from
another module and not from a register.

• For IF , which has the I$ the signal that skips the PC register is the Next Pc
Value (NPC), which is used as address.

• For MEM , which has the D$ the signals that skip the Pipeline Register C are:

– The control-bits which concern the STORE commands.

– The RS2 register value which concerns the STORE commands.

– The LSB’s from the ALU, which are used as offset.

– The ALU RES[8..2] which is used as address.

43

Chapter 4

Evaluation of the RV32I
Machine

4.1 Exploring The Official Tests

4.2 Testing Procedure and Final Words

4.1 Exploring The Official Tests

Since we completed the design of our system, it is now time to test it, so that we
can be sure that our work is accurate. To do so, we searched at the official RISC-V
GitHub repository and we found out that they actually provide a toolchain, in which
various tests for every architecture can be found. So, after installing and configuring
their software, we retrieved 37 assembly and machine code files, which were later broke
down to .hex and .dump files. So, for every instruction in our ISA we have one .dump
file and one .hex file.
The official RV32I tests have the following structure:
• Every test file (for every instruction) has many mini-tests inside it.

• Every mini-test:
– Uses the instruction in which it is dedicated.

– On success, it updates the GP 1 register and moves to the next one.

– On failure, it jumps to an ECALL instruction which has a specific opcode
and terminates the test 2 .

Judging by the way the tests were programmed, we conclude that they were de-
signed so that they can guarantee that every possible hazardous scenario for every
instruction has been accounted for and avoided. We will mention some cases, which
we haven’t initially considered, but we discovered later during testing the pipeline. Al-
ternatively, we could try and use our own tests but, unfortunately, we could not find
a stand-alone assembler for our cause. This means, that in order to test the system
ourselves we would have to program our very own RV32I Assembler...

1Global Pointer
2Since the ECALL command is not included to our current ISA, for the purpose of testing
we added one extra signal to the ID module which is the ECALL signal. When it comes it
simply the signal takes the value 1 and so we understand that the test is finished

44

https://github.com/riscv
https://github.com/riscv

University of Ioannina 2019 RISC-V 32I Implementation

4.2 Testing Procedure and Final Words

After understanding the testing logic, we used python (version 3) to create a script
that takes the .hex file and generates a .mif1, which represents the loaded I$. For
LOADS and STORES tests, which had some values stored in D$, we manually ini-
tialized the data cache .mif files for every one of them. In conclusion, we end up with
37 different .mif files for I$ and also 8 .mif files for D$ 2.

All that’s left now is to run one timing simulation for every test that we have.
For our initial tests, we used Quartus-II 3 embedded simulator. Unfortunately, the
first tests were not successful (as we expected), due to various logic errors in the final
structural design and the debug process was not easy, because we could not probe the
suspicious internal nodes and signals easily using this simulator. We had to modify
every file and add extra signals, so that they could show up at the simulation. This
means alternation to package files and all modules that use the circuit in which we
appended a new probing signal to observe.

After many debug attempts, we switched to ModelSim where we could easily add
and remove every node we wished in the simulation window, something that we made
our debug process much easier than it was before. So after various errors we spotted
during the testing process, we were able to finally find and fix every bug that we found.
But for every change we made, we couldn’t be sure that this change would not affect
previous tests that were completed successfully. So, after the final/last changes we
made we performed a regression testing, meaning that we run all the tests again. The
results were satisfying, since every test was completed successfully.

4.2.1 A Test Example

We will now showcase a sample of our testing process. This test concerns the ”ADDI”
command. All we need is just the .dump file, so that we can understand and follow
the simulation and also, we need the simulation window. The ”ADDI” test file has
25 mini-tests, so we cannot go through all of them. We will present the first of those
tests and its prosperous results.

Figure 4.1: ADDI test #2.

1Memory Initialization File
2There are 5 tests for all the LOAD instructions and 3 for all STORE instructions.
3Version 9.1sp Web Edition

45

University of Ioannina 2019 RISC-V 32I Implementation

Figure 4.2: ModelSim simulation of the ”ADDI” test #2.

46

University of Ioannina 2019 RISC-V 32I Implementation

4.2.1.1 About the Figure 4.1

The Load Immediate (li) command is a pseudo-operation, which translates to: addi
rd, x0 immediate register. The Move mv command is also a pseudo-operation, which
translates to addi rd, rs1, 0. So, all this test does, is to load to register $ra the
immediate 0, then copy its value to register $t5. Furthermore, it loads to register
$t4 the zero immediate again and to register $gp 1 it loads the id number of the test
(immediate 2). Finally, it conducts a branch, which ends to the fail section, if it is
Taken. The branch simply compares the value of $t5 and $t4 registers, which should
have the same value if everything went according to plan. If the test succeeds, then
the next command that we should see being fetched, it would be the 00100093 li.

4.2.1.2 About the Figure 4.2

We will pair the simulation waves shown in the Figure with a Pipeline diagram to
make it easier and more lucid.

Clock Cycle IF ID EXE MEM WB
0 li ra, 0 - - - -
1 mv t5, ra li ra, 0 - - -
2 li t4, 0 mv t5, ra li ra, 0 - -
3 li gp, 2 li t4, 0 mv t5, ra li ra, 0 -
4 bne t5, t4, 288 li gp, 2 li t4, 0 mv t5, ra li ra, 0
5 li ra, 1 bne t5, t4, 288 li gp, 2 li t4, 0 mv t5, ra
6 - li ra, 1 bne t5, t4, 288 li gp, 2 li t4, 0
7 - - li ra, 1 - li gp, 2
8 - - - li ra, 1 -

Notes:
→ The command is completed at the next clock cycle.

Table 4.1: Pipeline Diagram of test #2

The legend of the Figure 4.2 monitors some signals that we have selected for display.
Note that at the bottom row, there is a signal dedicated to the $gp register that gets
updated with the value 2 at clock cycle 9, as we expected to happen. But it would
get updated, even if the branch was taken and the test failed. What makes sure that
the test is successful is that, when the branch reaches its final stage (the EXE stage),
does not generate a TAKEN and therefore there is no FLUSH signal to empty the
previous pipeline registers.

1Global Pointer, this register gets updated with the test’s id number. So if the register is
written with all the mini-test ids we can tell that all the tests were successful

47

University of Ioannina 2019 RISC-V 32I Implementation

4.2.2 Problems Found and Solved by Testing

We will present two notable problems that were found while testing the complete
RV32I design:

4.2.2.1 The Branch and the Forwards

While running the tests for the BRANCH instructions, we noticed some unusual
behavior in our system, when we had a BRANCH command being followed by an I−
Type command. The problem was that, when the BRANCH entered the EXE stage
(meaning that the I−type command was at the ID stage) the ID generated a FWD A
signal. After reviewing once more the Instruction Types (Figure 2.2) and breaking
down the commands, we found out that the bits[11..7] of the BRANCH command
were the same as the rs1 bits of the I − type command, hence, the FWD A signal
would be generated. We did not take into consideration that NOT every instruction
has a bit-field dedicated to rd register. To overcome this problem, we added one extra
2 → 1 multiplexer that can be seen at Figure 3.15 right below the ID module. This
multiplexer is responsible for providing the address of the x0 register 1, whenever a
command, that does not have an rd register, enters the EXE stage. In that way, we
prevent the false forwarding signal generation at ID stage.

4.2.2.2 The Forward Path C

Back at Section 3.6.4, we presented the main problem of the M4K Memory Block
usage. Based on this issue, we analyzed even more the Forward C scenario, which has
to do with the MEM stage. The issue is that, whenever a scenario that requires the
activation of the C forward path occurs, the path activation signal (which is generated
at ID stage) would have to pass through:

• The Pipeline Register B.

• The Pipeline Register C.

• The Registered Inputs of the D$.

Furthermore, the signal should reach the MEM stage the moment that the LOAD
command (which precedes the STORE) occupies it. The reason is that, the LOAD
will read the D$ word (which is also required by the STORE) and will send it directly
to the Pipeline Register D. Then, 1 clock cycle later the signal will arrive, but the
value that must be forwarded will not be available anymore. So, when the Forward C
signal is generated, it skips the Pipeline Register B and goes directly to the Pipeline
Register C, along with the result of the ALU for the LOAD command.

1The register which is hardwired to the constant 0 and cannot be written

48

Chapter 5

Conclusion and Future
Work

5.1 Future Work

Our goal was to design a fully operative and synthesizable ISA for the RISC-V
architecture, the RV32I using V HDL. Every single component in our hierarchical
design, was fully and thoroughly tested with both timing and functional simulations.
Furthermore, the final design was successfully tested, by running the official RV32I
tests found from the Berkeley’s RISC-V GitHub repository. Those tests were 37 in
total, one for each command of the ISA. Finally, after many hours of exhaustive de-
signing, improvements and testing we can be sure, that our design is fully evaluated
and fits the RV32I single-core standards.

The FPGA device in which our system’s design was based on, was the Altera
Cyclone II - DE 2 Board. So, the last piece of our work, was to find the lowest
(worst case scenario) frequency that our core can achieve. After running the Quartus
TimeQuest Analyzer timing simulator and using the slow model for the simulation,
thee worst-case frequency found is 29.48MHz.

5.1 Future Work

On first look, we could try and change the architecture of some modules of our design
to achieve a better frequency. For example, at EXE stage (section 3.3), for the
Adder/Subtractor module, we used a ripple-carry architecture. The ripple carry is the
most basic adder, made just by joining adders with no exercise on speed or hardware.
Instead of this implementation, we could use a carry look-ahead adder or a Kogge-
Stone adder. Furthermore, we could add a branch prediction unit and change the way
we handle all the BRANCH cases. Last but not least, we wish to append the “M”
and “F” ISA extensions on our design, since at the RV32I ISA every component in
our CPU is scalable. All of those mentioned above, is left for Future Work due to time
limitations.

49

Bibliography

[1] The RISC-V Instruction Set Manual. Volume I: User-Level Isa (Version 2.1).

[2] The RISC-V Instruction Set Manual. Volume II: Privileged Architecture (Version
1.10).

[3] Altera: Internal Memory (RAM and ROM) User Guide.

[4] Altera: Cyclone II Memory Blocks

[5] Intel: Embedded Memory (RAM: 1-PORT, RAM: 2-PORT, ROM: 1-PORT, and
ROM: 2-PORT) User Guide.

[6] Design alternatives for barrel shifters.

[7] Performance, analysis and comparison of digital adders.

50

https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://content.riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
https://content.riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/an/an207.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyc2/cyc2_cii51008.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_ram_rom.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_ram_rom.pdf
https://www.princeton.edu/~rblee/ELE572Papers/Fall04Readings/Shifter_Schulte.pdf
https://ieeexplore.ieee.org/document/7164650

	Introduction
	Motivation
	Development
	Report Structure

	Background & Technical Information
	Base ISA Overview
	ISA Extensions
	The RV32I
	Instruction Length Encoding
	Base ISA Model
	Instruction and Immediate Formats
	Assembler Mnemonics for Registers
	The Instructions
	Integer Computational Instructions
	Control Transfer Instructions
	Load and Store Instructions

	Design of the RV32I Machine
	Instruction Fetch - IF
	Module's I/O

	Instruction Decode - ID
	Module's I/O
	Multiplexer Network
	Multiplexer Input

	Register File
	Immediate Generator
	Adder
	Stall & Forward Control
	Scenario A
	Scenario B
	Scenario C
	Stall Generation

	Execute Stage - EXE
	Module's I/O
	Adder / Subtractor
	Commands that Use The Module

	Barrel Shifter
	Commands that Use The Module

	Logic Module
	Commands that Use The Module

	Branch Resolver
	SLT Module
	ALU Output

	Memory Stage - MEM
	Module's I/O
	Byte Enable Module
	Load Masking Module

	Write Back - WB
	Forward Scenario D

	The Complete Pipeline
	ALU Input Selector
	Control Word Regroup Module
	WB Selector
	The M4K Block Issue

	Evaluation of the RV32I Machine
	Exploring The Official Tests
	Testing Procedure and Final Words
	A Test Example
	About the Figure 4.1
	About the Figure 4.2

	Problems Found and Solved by Testing
	The Branch and the Forwards
	The Forward Path C

	Conclusion and Future Work
	Future Work

