
Hornet RISC-V Core

User Guide

Yavuz Selim Tozlu
0yavuz0@gmail.com

July 4, 2021

Contents

1 Supported Instructions 1

2 Machine-Level ISA 1
2.1 CSRs . 1
2.2 Interrupts and Exceptions . 1

3 Memory Interface 3

4 Integrating Hornet into Your Design 4

i

Chapter 1

Supported Instructions

Hornet supports the following RISC-V instructions,

• RV32I Base Integer Instruction Set, Version 2.1 - Excluding FENCE instruction

• “M” Standard Extension for Integer Multiplication and Division, Version 2.0

• “Zicsr”, Control and Status Register (CSR) Instructions, Version 2.0

• MRET trap return instruction

Attempting to execute instructions that are not supported will cause an illegal instruction exception.

1

Chapter 2

Machine-Level ISA

2.1 CSRs

Hornet supports the following CSRs, as defined in the Machine-Level ISA, Version 1.11

• mstatus — mie, mpie and mpp bits only, rest are hardwired to zero.

• mtvec

• mip and mie — msi*, mti*, mei* and platform-specific interrupt bits only, rest are hardwired
to zero.

• mscratch

• mepc

• mcause

Writes to non-existent CSRs are ignored.

2.2 Interrupts and Exceptions

Hornet supports all machine-level interrupts, i.e. software, timer and external interrupts. It also
supports platform-specific interrupts.

Hornet supports the following exception sources,

• Instruction access fault

• Instruction address misaligned

• Illegal instruction

• ECALL and EBREAK

• Store/Load access fault

1

2

An instruction access fault occurs whenever the instr access fault i input is asserted.

An instruction address misaligned exception occurs when the branch/jump address calculation at
EX stage produces a misaligned address.

An illegal instruction exception occurs when an unknown instruction is encountered. This exception
will be raised when the illegal instruction reaches the ID stage.

An ECALL or an EBREAK exception will raised when the associated instructions are encountered.
These exceptions are raised when the instructions reach the ID stage.

A store/load access fault occurs whenever the data err i input is asserted.

When an interrupt occurs, the PC of the oldest instruction in the pipeline is saved, and the pipeline
is flushed. The next instruction is fetched from the interrupt handler routine. An MRET instruc-
tion will return the core from the handler, and the execution will continue from the interrupted
instruction.

When an exception occurs, the PC of the faulting instruction is saved, and the pipeline is flushed.
The next instruction is fetched from the exception handler routine. An MRET instruction will
return the core from the handler. However, it is the handler’s responsibility to update the contents
of mepc register, as the core will return to the address that was stored there.

Chapter 3

Memory Interface

Hornet employs a simple data memory interface. The signals and their functions are listed below,

• data i: 32-bit data input.

• data wmask o: 4-bit data write-mask output.

• data wen o: 1-bit write-enable output, active-low.

• data addr o: 32-bit data address output.

• data o: 32-bit data output.

• data req o: 1-bit data request output. Driven high if a memory transaction is requested.

• data err i: 1-bit data access error input. If this signal is driven high, a load/store access
fault occurs.

Address of the data is calculated and outputted at the EX stage, along with data, mask, write-
enable and request signals. If the instruction is a load, then at the MEM stage, the data is read
from the data i input.

Instruction memory interface is identical to data memory interface, except it has even fewer signals.

Hornet can handle misaligned memory accesses. It will split the misaligned access into two aligned
accesses. Hence, a misaligned access will take one additional clock cycle to complete.

3

Chapter 4

Integrating Hornet into Your Design

In order to integrate Hornet core into your design, you need to instantiate it in your source file as
follows,

core //Program counter w i l l be s e t to r e s e t v e c t o r when a r e s e t occurs .
//By de f au l t , i t i s 0 .
#(. r e s e t v e c t o r ())
core0 (
//Clock and r e s e t s i g n a l s .
. c l k i () ,
. r e s e t i () , // ac t i v e−low r e s e t

//Data memory i n t e r f a c e
. data addr o () ,
. d a t a i () ,
. data o () ,
. data wmask o () ,
. data wen o () , // ac t i v e−low
. da ta r eq o () ,
. d a t a e r r i () ,

// In s t r u c t i on memory i n t e r f a c e
. i n s t r a d d r o () ,
. i n s t r i () ,
. i n s t r a c c e s s f a u l t i () ,

// In t e r r up t s
. me ip i () ,
. mt ip i () ,
. ms ip i () ,
. f a s t i r q i () ,
. i r q a c k o ()) ;

reset i is an active-low signal that asynchronously resets all registers in the core.

4

5

meip i signal is the machine-level external interrupt input. This input should be kept high until
the core responds by asserting the irq ack o signal for one clock cycle. The IRQ acknowledge
signal is only asserted from this interrupt, as a way to notify the interrupt controller.

msip i and mtip i signals are machine-level software and timer interrupt inputs, respectively. From
the core’s perspective, the only difference is the value that mcause is set to.

fast irq i signal is a 16-bit long input. It corresponds to the platform-specific interrupts. The
core utilizes a priority scheme among these fast interrupts. The interrupt with the smallest in-
dex, i.e. fast irq i[0], has the highest priority; and the interrupt with the greatest index, i.e.
fast irq i[15], has the lowest priority. Driving the inputs high for one clock cycle is sufficient to
cause an interrupt, as the core will register them internally.

Platform-specific interrupts have higher priority than machine-level interrupts, hence the name
”fast interrupts”.

If you don’t plan to use interrupts, you can tie the inputs to zero.

The only mandatory peripheral for the core to work is memory. An example memory module is
provided in the peripherals directory.

	Supported Instructions
	Machine-Level ISA
	CSRs
	Interrupts and Exceptions

	Memory Interface
	Integrating Hornet into Your Design

