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Chapter 1

Introduction, and Simulation Top-level

1.1 Introduction

Bluespec, Inc. provides three free, open-source RISC-V processors on GitHub (with more
to come in the future).

e Piccolo: simple 3-stage, in-order.
https://github.com/bluespec/Piccolo

e Flute: simple 5-stage, in-order, some control-flow speculation and branch prediction.
https://github.com/bluespec/Flute

e Toooba: aggressive superscalar, out-of-order, agressive speculation and branch pre-
diction.
https://github.com/bluespec/Toooba

All three are Linux-capable (can be built for RV64IMAFD with Machine and Supervisor
privilege levels; Sv39 virtual memory; and external, software and timer interrupts).

Piccolo and Flute are highly parameterized and can also be built with smaller capabilities
(e.g., embedded, IoT). In particular, you can choose any of the following ISA options:

RV32I or RV641

M (integer multiply /divide)

A (atomics)

F (single-precision floating point)

D (double-precision floating point)

C (compressed instructions)

S (Supervisor privilege level), with Sv32 virtual memory for RV32 and Sv39 or Sv48
virtual memory for RV64

e U (User privilege level)

Piccolo and Flute have separate instruction and data memory channels, with L1 caches
where you can choose cache sizes and organization.

Toooba is RV64IMAFDC with Sv39 virtual memory, and multicore. It has many parameter
choices such as degree of superscalarity, L1 cache size and organization, L2 cache size and
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1-2 Intro and Simulation/System Top-level

organization, reorder buffer size, number of arithmetic, floating point and memory pipelines,
size of store buffers, memory model, number of cores, etc.

1.1.1 Purpose of this document/target audience(s)

This document is intended for people trying to use the pre-generated Verilogs in the repos-
itories, and for people trying to understand the BSV source code in the repositories with a
view to regenerating the Verilogs, perhaps with custom changes. It is intended to provide
top-level context for the code and code structure so that you can navigate the directories
and read the code and/or understand how to use the pre-generated Verilog.

Here are several possible use models for the code in these repos:

e Take the pre-generated Verilogs for the RISC-V CPUs, as-is, for use in the user’s
own SoC. The SoC provided in these repos allows developing and debugging software
immediately even if the user’s SoC is not yet ready.

e Choose different parameters (relative to the pre-generated Verilogs) for the CPUs,
and regenerate the Verilogs, for use in the user’s own SoC. E.g., choose a different set
of RISC-V options (RV32/RV64, A, M, F, D, C, with/without Supervisor and virtual

memory, ...)

e Modify the BSV code for the CPUs for the user’s customizations, and re-generate the
Verilogs. E.g., add new custom instructions.

e Use the system here as a “socket” to plug in the user’s own RISC-V CPU implementa-
tion, giving the user a system that can run software out of the box with full debugging
support, even if the user’s SoC is not yet ready.

e Use the CPU and SoC here as is, just adding extra AXI4 ports on the system inter-
connect to connect the user’s own memory-mapped accelerator. The user can develop
software for the accelerator and test it immediately, with full debugger control.

This document does not attempt to explain the BSV High Level Hardware Design Language.
For that, please refer to language manuals and tutorials at https://github.com/BSVLang/Main/.

This document does not attempt to do a detailed code explanation of the BSV code in the
repositories. Rather, this document is only meant to provide you high level context and
structure so that you can, on your own, easily navigate through the directories and files.

1.2 Common “system” for all three processors

The GitHub repositories for Piccolo, Flute and Toooba include a common “system” envi-
ronment for the processors so that they can execute RISC-V binaries out of the box, using
Verilog simulation. Most of this system is also synthesizable for FPGA or ASIC.

Fig. 1.1 illustrates the structure of the common top-level system.

Notation in figure: Nested rectangles indicate module hierarchy. Here, module mkTop_HW_Side
instantiates module mkSoC_Top with instance-name soc_top and instantiates module mkMem_Model
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mkTop_HW_Side (non-synthesizable,

simulation only)

soc_top (synthesizable)

mem_model
mkSoC_Top
mkMem_Model
core
mkCore
Other SoC
components

Other simulation-only code

Figure 1.1: The top-level of the module hierarchy of the system.

with instance-name mem_model. Module mkSoC_Top, in turn, instantiates module mkCore with
instance-name core.

Fig. 1.2 expands the mkSoC_Top module for more detail.

mkSoC_Top fabric b
server_ - oot_rom
external_ core mkFabric_AXI4 de- mkBoot ROM
EontrngB/ mkCore Slave H ) rster H )
e.g.,
OptgnO(lZ)D. u CPISCPU ] Master memO_controller
optiona |m
' de- mkMem_Controller] | to raw
Piccolo/Flute/Toooba - — -
tv_verifier_ ] ] Master Slave P b rster |13 mem
info_get
\(/t;r?Fcijf:;ion non_m!a_sLable_ s to/from
| interrupt -
optional) (unuseg) Slave Ty mkUART console
external_ Master  Slave
interrupt_ )
sources [ ] mkAXI4_Accel accelO (optional)
<

Figure 1.2: The common SoC structure shared in all repos.

At the center is an AXI4 fabric (interconnection network) that connects a parameterizable
number of master ports to a parameterizable number of slave ports. Two of the master
ports are used by mkCore inside which is the Piccolo/Flute/Toooba CPU. The slave ports
are connected to a Boot ROM, a memory and a UART, and optionally to one or more
memory-mapped accelerators.

The core can optionally be controlled by an external debugger (e.g., GDB and OpenOCD). It
can optionally send out a detailed instruction-by-instruction trace for “Tandem Verification”
with a golden reference model of a RISC-V CPU. It can accept external interrupts from
I/O devices. The two master ports into the fabric are peers and can be used in different
ways. In Piccolo and Flute, one master port is used for all instruction traffic and the other
is used for all data (memory and I/O traffic). In Toooba, one master is used for all memory
traffic (instruction and data) and the other is used for all I/O traffic.

The Boot ROM and Memory-Controller modules do not handle AXI4 bursts; the “de-
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burster” modules convert burst requests from and responses to the fabric into individual
request /responses to the modules behind them. The Memory Controller has an interface
taken all the way out of mkSoC_Top to an external DRAM controller of 256-bits of 512-bits
width.

The UART has an interface taken all the way out of mkSoC_Top streaming bytes in and out.

The core and the CPU have a “non-maskable interrupt” input interface that is not used
in this SoC (in a real chip, they might be connected to sensors signaling power failure,
temperature overheating, etc.).

There are two versions of mkCore, one shared by Piccolo and Flute, and the other for Toooba.
The former is described in more detail in Ch. 2, and the latter in Ch. 5. In addition to the
CPU pipelines themselves, the cores include:

e I- and D-caches;

e TLBs and virtual-memory management (including hardware page-table walkers);

e a set of “near-memory I/0O” components such as a memory-mapped real-time timer, and
memory-mapped software-interrupt location;

e a PLIC (Platform Level Interrupt Controller);

e an optional Debug Module;

e and an optional Tandem Verification output trace encoder.

The CPU pipelines themselves are described separately for Piccolo in Ch. 3, Flute in Ch. 4,
and for Toooba in Ch. 6.

Optionally, one can have one or more memory-mapped accelerators connected to extra
master and slave ports. Typically, a memory-mapped accelerator is programmed/configured
and “started” by the processor using writes through a fabric slave port. The accelerator,
once running, accesses memory directly using reads and writes through a fabric master port.
Completion of the acceleration task is detected by the processor either by polling (reads)
on the slave port, or by receiving an interrupt from the accelerator.

1.3 Common directory organization

In general, a module mkFoo can be found in a file Foo.bsv.

All the repositories also follow a common directory organization:

e The directory src_Core/ contains mkCore (in file Core.bsv) and everything inside it,
including the CPU pipelines, L1 caches, PLIC (Platform Level Interrupt Controller),
Debug Module, and Tandem Verification trace generator.

e The directory src_Testbench/SoC/ contains mkSoC_Top and other SoC components.

e The src_bsc_lib_RTL contains copies of a few Verilog library files used by the Bluespec
bsc compiler, and can be treated here as black boxes.

e The src_ssITH_P1/P2/P3 directories can be ignored; they contain different wrappers of
src_Core intended for the DARPA SSITH project and are not otherwise relevant.
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Linux/Unix users will be familiar with the standard ’find’, which is useful to locate a file
with a given name in the directory tree below the current directory:

$ find . -name <filename>

Similarly, the standard program ’grep’ is useful to locate a file containing a specific substring
in the directory tree below the current directory:

$ grep -Rn <string> . # Case sensiitive
$ grep -iRn <string> . # Case insensitive

1.4 Pre-generated Verilogs, regenerating them, and generating new
configurations

The repositories contain pre-generated Verilog for certain configurations as subdirectories
of the builds/ directory. For example, in the Piccolo repository, the directory

builds/RV64ACFDIMSU_Piccolo_verilator

is for building Piccolo for RV64l with ISA options ACDFIMSU for verilator. The sub-
directory Verilog_RTL/ has the pre-generated Verilog for this.

If you have an installation of the Bluespec BSV bsc compiler, you can re-generate the
Verilogs, or build a Bluesim simulation, or generate other configurations (see the README
in the repo for how to compile and build).

1.5 Using just the core in your own designs

In Fig. 1.1, mkCore is the basic core: CPU pipeline, L1 caches, PLIC (Platform Level Interrupt
Controller), and optional Debug Module and Tandem Verification trace generator.

For Piccolo and Flute, in the pre-generated Verilog directories (see Sec. 1.4), the code is in
file mkCore.v and other Verilog files representing the module hierarchy below it.

For Toooba, in the pre-generated Verilog directories, the code is the file mkCorew.v and other
Verilog Verilog files representing the module hierarchy below it.

The interface of the core module is the same for all three CPUs:

e CLK and RST_N are the clock and reset inputs.

e The buses named cpu_imem_master_* are an AXI4 master interface.

The buses named cpu_dmem_master_x are an AXI4 master interface.

The following buses are useful in simulation for debugging:
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set_verbosity_verbosity
set_verbosity_logdelay
EN_set_verbosity

RDY_set_verbosity

When the RDY output is high, the enviroment can assert the EN input and drive the
other two inputs, setting the cycle delay after which the verbosity should change, and
the verbosity value to which it should change. Verbosity of 1 will print an instruction
trace; higher values will print more detail from the CPU pipeline.

e The ’reset’ signals are for a ’soft’ reset of the core to its initial state (the same
state as after the electrical reset RST_N). They come in two groups representing a
request /response protocol, since a full reset of the core can take multiple cycles.

When output RDY_cpu_reset_server_request_put is 1, the environment can request a reset

by asserting EN_cpu_reset_server_request_put and driving a 0 or 1 on cpu_reset_server_request_put.
Driving a 1 specifies that, after the reset, the CPU should come up running (the nor-

mal case). Driving a 0 specifies that the CPU should come up halted in Debug Mode,

waiting for commands from an external debugger.

When output RDY_cpu_reset_server_response_get is 1, it indicates that the core has reset
itself. The environment can read cpu_reset_server_response_get to see if the core is
running (1) or halted (0) The environment can assert EN_cpu_reset_server_response_get
to acknowledge to the core that it has observed this information.

e The core contains a standard RISC-V PLIC (Platform Level Interrupt Controller) sup-
porting 16 external interrupts at the “m” (machine) privilege level. These are the 16 in-
put signals of the form: core_external_interrupt_sources_j_m_interrupt_req_set_not_clear

e The core supports a non-maskable interrupt on the input signal nmi_req_set_not_clear,
intended for very urgent interrupts such as power failures, thermal overload, etc.

1.6 Using SoC in your own designs, with these or other cores

In Fig. 1.1, mkSoC_Top is a basic SoC (System-on-a-chip).

In all the repositories, in the pre-generated Verilog directories (see Sec. 1.4), the code is in
file mkSoC_Top.v and other Verilog files representing the module hierarchy below it. The SoC
contains:

e The RISC-V core, described in the previous Sec. 1.5, is in file mkCore.v. You can use this
mkCore.v Or substitute your own core with the same Verilog interface.

e An AXI4 crossbar fabric (file mkFabric_AXI4.v).

e A boot ROM (file mkBoot_Rom.v) with an AXI4 interface (without burst support).

e A memory controller, front end for a DRAM controller (file mkMem_Controller) with and
AXI4 interface (without burst support).

e An AXI4 to AXI4 slave adapter, instantiated twice, once for the Boot ROM and once for

the memory controller (file mkAXI4_Deburster_A.v), so that they can support burst AXI4

requests.

A synthesized model of an NS16550 UART (file mkUART.v).



Chapter 2

Common mkCore structure for Piccolo
and Flute

The mkCore module for Piccolo and Flute in Fig. 1.2 is shown in more detail in Fig. 2.1.
mkCore in src_Core/Core/Core.bsv

cpu_reset_server dma_server cpu_dme slave

nnnnnn

mmmmmmmmm

mkDM_Mem_Tap

Figure 2.1: The common mkCore for Piccolo and Flute.

The mkcPU module is the Piccolo or Flute CPU with L1 caches and MMUs. The interface is
identical for Piccolo and Flute. In the figure, on the right, it has two AXI4 interfaces. One
of them goes straight out to the mkCore interface for instruction access as the cpu_imem_master
interface; this is an AXI4 master. The other, for data memory and I/O access, is also an
AXIT4 master, but it connects to a 2x3 interconnect fabric. The 2x3 fabric has three AXI4
slaves:

® mkNear_Mem_IO_AXI4 contains “nearby” memory-mapped locations, such as the RISC-V
standard real-time timer (MTIME), timer-compare (MTIMECMP) and software-interrupt
(MSIP). Interrupts generated from these, in turn, are connected back to mkCPU (red
arrows).

e mkPLIC, a standard RISC-V Platform Level Interrupt Controller. It accepts a vector of
external interrupt sources and arbitrates them, finally feeding the winning interrupt(s)
into mkCPU.
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e A direct connection out to the main system interconnect, cpu_dmem_master for all other
data memory and I/O device access.

2.1 Optional Debug Module

An optional RISC-V standard Debug Module mkDebug Module has connections into mkCPU
for run-control (halt, resume) and access to GPRs, FPRs and CSRs. It is also a second
master on the mkFabric_2x3 so that it can access all memory and I/O devices. On the left
of mkDebug_Module has a standard “DMI” (Debug Module Interface) which is a memory-like
read/write interface by which an external debugger interacts with the Debug Module. A
typical setup would be:

GDB <= OpenOCD <= JTAG transport <= DMI

Source code in the src_SSITH_Pn/src_BSV/ directory is available for the JTAG connection to
OpenOCD.

The Debug Module gives GDB full control over the RISC-V CPU, including 1C (halt a run-
ning program); setting/removing breakpoints; reading and writing memory, GPRs, FPRs
and CSRs (including the PC); single-stepping; resetting the CPU; and resetting the system.

2.2 Optional Tandem Verification Trace Generation

The optional mkTv_Encode module sends out an instruction-by-instruction trace to an exter-
nal recorder/analyzer. Information associated with each instruction includes the PC, the
instruction itself, updates to GPRs/FPRs/CSRs, updates to memory and the next PC. For
memory instructions it also includes the effective address.

This output trace can be compared with an expected trace on a “golden reference model”; a
divergence typically reveals a bug in the hardware implementation for some particular kind
of instruction.
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Piccolo

... To be written ...
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Chapter 4

Flute

Fig. 4.1 shows the major module structure inside mkcpU for Flute. At the heart is a 5-stage

mkCPU |mkGPR RegFile |
trace_data_out [J [rkFPR_RegFile |
(op(tjional |[mkcsR RegFile |
tandem
verification stageF stageD stage1 stage2 stage3

trace) mkCPU_| |mkCPU_] |mkCPU_| |mkCPU_] |mkCPU_

StageF StageD Stage1 Stage2 Stage3 m_external_interrupt_req

s_external_interrupt_req

(Fetch) (decode) (exec ALU) (mem, (writeback) .
FPU, software_interrupt_req
Debug Module mkCPU int mul/div . .
interface Fetch C serial shift, timer_interrupt_req
(optional) — any long-latency op)
hart0_run_halt_server near mem nmi_req

hart0_gpr_mem_server]
-9PrMem.. mkNear_Mem
hart0_fpr_mem_server

hart0_csr_mem_server

icache

dcache

mkMMU_Cache

mkMMU_Cache

y .

™1
el

imem_master

dmem_master

Figure 4.1: Flute module structure.

pipeline embodied in the following modules:

e stageF, an instantiation of mkCPU_StageF. This is the Fetch stage. The Fetch stage in-
cludes a branch predictor (branch target buffer and return-address stack). If the CPU
is built with the RISC-V C extension (Compressed instructions), an additional module
mkCPU_Fetch_C is interposed in front of the instruction-memory that decides whether the
next instruction delivered is a C instruction or a normal RV32/RV64 instruction.

® stageD, an instantiation of mkCPU_StageD. This is the Decode stage. If the CPU is built with
the RISC-V C extension (compressed instructions), the decode stage includes expansion
of C instructions to their normal RV32/RV64 counterparts.

e stagel, an instantiation of mkCPU_Staget. This is the Execute stage for all single-cycle
ALU operations. Conditional branches and jumps are resolved here, and results are fed
back to StageF to redirect on mispredictions and to train the Branch Predictor.
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e stage2, an instantiation of mkCPU_Stage2. This stage has parallel paths for all potentially
long-latency operations including memory access (load, store, atomics), floating point
(RISC-V F and D extensions), integer multiply/divide (RISC-V M extension), optional
serial shifter (instead of a barrel shifter in Stage 1), etc.

e stage3, an instantiation of mkCPU_Stage3, the writeback stage where final values are written
back to the GPR and FPR register files.

The reason for the somewhat unusual naming scheme (instead of stages 1..5), is because of
the code-sharing structure with Piccolo, a 3-stage pipeline. Piccolo’s Stage 1 is essentially
an expansion of Flute’s Stage F, D and 1. Piccolo’s Stage 2 and 3 are the same as Flute’s
Stage 2 and 3, respectively.

The GPR and FPR register files are read in Stage 1 and written back in Stage 3. There is
bypass logic to feed back output values from Stage 2 and Stage 3 to the register-file read
logic in Stage 1.

CSR instructions, instructions that trap, and interrupts are handled specially, outside nor-
mal pipeline flow. For CSR instructions, interrupts and traps in Stage 1, they wait in Stage
1 until the downstream stages (Stages 2 and 3) are empty, and are then handled in an FSM
outside the pipeline. For instructions that trap in Stage 2 (e.g., memory access faults, pro-
tection faults, misaligned faults, unimplemented addresses), they wait until the downstream
stage (Stage 3) is empty, and is then handled in an FSM outside the pipeline. In all these
cases, the Fetch stage is redirected (restarted) after the instruction.

There are two external interrupt inputs, feeding the MEIP (external interrupt pending at
machine privilege) and SEIP (external interrupt pending at supervisor privilege) bits of the
RISC-V MIP CSR. There is one input for software interrupts (MSIP) and timer interrupts
(MTIP). There is also one input for non-maskable interrupts.

4.1 “Near Memory”

Inside mkcPU we instantiate a “near memory” subsystem, mkNear_Mem. This is a separate
module that implements L1 caches, MMUs and virtual memory support, but it can be
replaced by an alternative implementation such as a fixed latency TCM (Tightly Coupled
Memory implemented in SRAM).

Inside this module we have two instantiations of mkMMU_Cache, one for instruction memory
(imem) and one for data memory and I/O accesses (dmem). The current instantiated module
mkMMU_Cache is parameterized for size and associativity, and has a “write-through-no-allocate”
(write-hits are performed in the cache and sent to memory; write-misses are only sent to
memory).

4.2 Optional Debug Module interface

The optional Debug Module interfaces connect to a Debug Module outside mkcpu, allowing
full GDB control of the CPU (see Sec. 2.1).
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4.3 Optional Tandem Verifier trace output interface

The optional trace_data_out interface connects to Tandem Verifier Trace Encoder outside
mkCPU (see Sec.2.2).
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mkCore structure for Toooba

... To be written ...
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Toooba

... To be written ...
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