

dv-cpu-rv: CPU design of RISC-V

Devin

balddevin@outlook.com

2023/7/22

2

Content

1 Preface .. 4

2 Hardware Design ... 4

2.1 Basic Single Cycle Implementation ... 4

2.1.1 Deisng Diagram .. 4

2.1.2 The Building of Data Path .. 5

2.1.3 The Building of Control Path .. 5

2.1.4 How the Processor Works? ... 6

2.2 Basic Pilelined Implementation ... 7

2.2.1 Design Diagram .. 7

2.2.2 Data Hazard: Forwarding or Bypass ... 9

2.2.3 Control Hazard: Branch Prediction ... 10

2.2.4 Architecture Hazard: Stall ... 11

2.3 Support for RV32I and RV64I .. 11

2.3.1 Design Diagram .. 11

2.3.2 Modification Overview ... 12

2.3.3 ALU control unit ... 12

2.3.4 Branch and Jump ... 12

2.3.5 Strobe Unit .. 13

2.4 Support for RV32M and RV64M .. 15

2.4.1 Booth-Wallace Multiplier ... 15

2.4.2 SRT Divider .. 22

3 Functional Description .. 32

3.1 Files and Directory Structure... 32

3.2 RV32I Module Design .. 32

3.3 RV32M Module Design .. 32

4 Appendices.. 33

4.1 Appendix 1: Support of Instruction Set .. 33

4.2 Appendix 2: Examples for Run ... 36

4.2.1 Example 1: Add and Store. ... 36

3

4.2.2 Example 2: Sum Less Than. ... 36

4

1 Preface

The design of this CPU mainly refers to Computer Organization and Design: The Hardware

/ Software Interface: RISC-V Edition, David A.Patterson, John L. Hennessy.

The source code is also distributed to Github: devindang/dv-cpu-rv. Please feel free to submit

issue or pull request.

2 Hardware Design

These subsections of this section are not the final version, any of them is corresponded to a

git commit, the hash identifiers are displayed, It mainly plays the role of recording and

learning rather than technical documentation.

2.1 Basic Single Cycle Implementation

2.1.1 Deisng Diagram

PC

Instruction
Memory

Read

address

Instruction

[31:0]

Registers

Read

register 1

Read

register 2

Write

register

Write

data

Imm
Gen

ALU
control

M

U

X

0

1

M

U

X

0

1

ALU ALU
result

Read

data 2

Read

data 1

Data
memory

Address

Write

data

Read

data
M

U

X

1

0

Control

Instr [30, 6:0]

M

U

X

0

1

Instr [31:0]

ALUOpSel

Instr [6:0]

Instr [11:7]

Instr [24:20]

Instr [19:15]

RegSrc RegWrite

ALUSrc

MemWrite

MemToReg

MemRead

Branch

Shift
left 1

ADD

ADD

4

Sum

Branch
test

BranchTaken

Figure 2.1 The Basic Single Cycle Implementation of CPU

The corresponding hash code is: a7b05c264b7f45e27a81ddc02184c6dcee29fdf9

The figure above shows the implementation of the basic single cycle cpu, in which the hinted

lines are signals of control path, while the others are signals of data path.

https://github.com/devindang/dv-cpu-rv

5

2.1.2 The Building of Data Path

A data path is a unit used to operate on or hold data within a processor. In the RISC-V

implementation, the datapath elements include the instruction and data memories, the register

file, the ALU, and dders.

Instruction Memory is the memory where instructions are stored, which is independent of

Data Memory in Havard architecture computer. In this implementation, the instruction

memory is a memory has the address line bits of 64, which is identical to the bit width of data

processed in CPU and, has the data line of 32 bits, the bit width of all the RISC-V instructions.

PC (Program Counter) is designed to fetch the instructions of Instruction Memory, which

increments itselves by 4 per clock cycle in most cases, 32 is 4 bytes, and addressing in RISC-

V is in bytes. In some cases, PC will jump or branch to certain location of the Instruction

Memory and fetch. Thus, there is a MUX in the top right.

Register File contains the all 32 registers defined in RISC-V, each is of 64 bits width, it’s

designed to store constant 0, parameters, PC, subroutine entries, etc.

ALU (Algorithm Logic Unit) is the core of CPU, it’s responsible for almost all the

algorithms like add, subtract, xor, or, and in I standard, and more broadly, multiply, division,

floating in M extension and F extension. The ALU in this design has the data width of 64, of

either the oprands or the result.

Data Memory is the memory to store rich data, interact with external components like DMA

(Direct Memory Accessing). It determines the maximum data counts a computer could

handle at the same time. For example, a data memory with data width of 1 Byte, and address

width of 32, the maximum data counts it could handle is 2^32*1B=2^2*1GiB=4GiB. In this

design, the Data memory has the data width of 64, which is 8B, so the physical address must

be divided by 8.

Immediate Generation is the unit to sign expand the immediate, and transfer to ALU or,

act as an offset to PC to control procedure. It decodes the instruction fetched, retrieve the

corresponding immediate according to the opcode filed, funct7 filed, or funct3 filed, and then

perform sign expand to 64 bits.

2.1.3 The Building of Control Path

A control path is a unit to control the data transfer between the data path units according the

decoding result of the instruction. In this RISC-V implementation, the control path generate

the following signals to control the process.

Note that these control signals are only applied to the single path situation, only in this

commit, the further update introduced several complicated control signals, it will be talked

in the later sections.

Control Lanes Deasseted Asserted

Branch None.
combined with branch testing to determine
whether to branch.

6

MemRead None. Read memory.

MemToReg
The value fed to register write data input

comes from the ALU result.

The value fed to register write data input

comes from the data memory.

MemWrite None. Write memory.

ALUSrc
The operand 2 of ALU comes from the
register read data 2.

The operand 2 of ALU comes from the
immediate generation unit output.

RegWrite None. Write data to register.

RegSrc X X

RegSrc is a failed set, it will deprecated further, it’s initially created to select PC as register

write data for instructions like JAL, JALR.

With these control signals, the CPU could process simply calculation, it will process only

one instruction per signal cycle. There is an example in ./ docs/assembly.md , which is

marked as 1, it will perform an addition calculation and obtain 29 as the result, which will be

stored into memory. This is the only test cases adapted to this commit.

2.1.4 How the Processor Works?

The single cycle implementation is a good example to explain. As described, the processor

contains both Data Path and Control Path, the Data Path is responsible for data exchange,

and the Control Path generate nearly all the enable signals and selection signals and thus

guiding the processor in the correct path.

Instruction Fetch: The processor fist fetch the instructions from the Instruction Memory, the

instructions are the machine codes that the process could read itself. The instructions in

RISC-V are all 32-bits long, there is no additional logic for supporting shorter instructions.

The processor read the instructions one by one, and process them, give the corresponding

responses.

Instruction Decode: As the processor obtains the instructions, the next action is to decode,

that is, to analyze the instructions. The control unit is effective here, which generates control

signals like Branch, MemRead, ALUSrc, etc. Immediate Generation unit is also effective

here for sign expanding immediates for I-type instructions and U-type instructions so that the

processor could use them as operands in the next stage.

Execution: ALU and ALU control unit are effective here, the ALU execute the arithmetic

operation with the ALU control unit. Besides, the branch testing unit is also placed here for

testing if branching of not in the next instruction fetch, that’s because the branch action

depends on the ALU result.

Memory Access: ALU result is feed into the address ports of the Data Memory for S-type

store instructions and I-type load instructions. Only in this phase, the memory is accessed.

The read or write action is decided by control units in ID phase.

Write Back: RISC-V do not allow direct accessing to memory to get operands, so does the

write back operation. All the data related to memory must operate in registers. The write back

phase write the memory read_data from load instruction or the alu result back into registers.

7

2.2 Basic Pilelined Implementation

2.2.1 Design Diagram

PC

Instruction
Memory

Read

address

Instruction

[31:0]

Registers

Read

register 1

Read

register 2

Write

register

Write

data

Imm
Gen ALU

control

M

U

X

M

U

X

ALU ALU
result

Read

data 2

Read

data 1

Data
memory

Address

Write

data

Read

data
M

U

X

1

0

Control

Ins tr_I D

Ins tr

ALUOpSel

Ins tr [6:0]

Ins tr_WB

Ins tr [24:20]

Ins tr [19:15]

RegWrite

ALUSr c

Me mWrite

Me mTo Re g

Me mRead

4

Branch Take n

E
X

M

W
B

M

W
B

W
B

Hazard
detection unit

Fowarding
unit

IF/ID

ID/EX

EX/MEM

MEM/WB

Ins tr_E X Instr_MEM

Ins tr_WB

+ Sum

Shift
left 1

Branch
test

+

M

U

X

Fo rward _A

Fo rward _B

Branch
prediction unit

IF _Flush

IF_pre dict

RegWrite

M

U

X

M

U

X

Reg isterFi le

Forw ard ing

RegWrite

Branch

PC_Sr c

PC_write

M

U

X

0

PC_ID

Figure 2.2 The basic pipelined implementation of CPU

The corresponding hash identifier is: 1d28ab2a485737b8bd90fa777fd550d5183b705c

The figure above shows the implementation of the basic pipelined cpu, in which the hinted

lines are signals of control path, while the others are signals of data path. Compared to the

single cycle implementation, additional units are required, they are:

i) 4 registers for pipelining, named IF/ID, ID/EX, EX/MEM, MEM/WB, separately;

ii) Forwarding unit for dealing with data hazard introduced by pipelining;

iii) Hazard detection unit for stalling the CPU in special cases;

iv) Branch prediction unit for accelerating the CPU, which saves the operation cycles;

v) Forwarding unit for RegisterFile, which solve the read/write hazard of register.

The details of these units will be talked in the later section: Support for RV32I and RV64I.

8

PC

Instruction
Memory Registers

Imm
Gen ALU

control

M

U

X

ALU

Data
memory

Control

4

E
X

M

W
B

M

W
B

W
B

Hazard
detection unit

Fowarding
unit

+ Sum

Shift
left 1

Branch
test

+

Branch
prediction unit

RegisterFi le

Forw ard ing

0

IF ID EX MEM WB

Figure 2.3 Five pipeline stages

The figure above is the partition of the 5-stage pipelined CPU, the five stages and their

functions are listed (which are talked already):

1. IF (Instruction Fetch): Fetch instructions from the Instruction Memory with PC as

memory address. Besides, branch prediction unit is placed here to control PC.

2. ID (Instruction Decode): Decode instructions to generate control signals, sign expand

immediates, control the operation of register files. Besides, Hazard detect unit is placed

here to stall the pipeline.

3. EX (Execution): Execute algorithm calculation, and perform branch testing. Besides,

forwarding unit is placed here to forwarding result of the pipeline stages output.

4. MEM (Memory Access): Access memory for load and store instructions.

5. WB (Write Back): Write back data to register files.

9

Figure 2.4 Pipeline sequential in this design

Different from the single cycle one, the pipelined architecture allow overlaps between these

five phases, thus improves throughputs. The issues it brings are also clear, we will talk them

in the later two sections.

2.2.2 Data Hazard: Forwarding or Bypass

Data hazards are obstacles to pipelined execution. The method to deal with this issue is

adding a forwarding unit, which forwarding the data in the previous data flow, such as

alu_result, or registered ones, to current execution cycle, instead of waiting for the last

instruction to write back.

Figure 2.5 Data hazard in pipeline architecture

10

Figure is the example in Computer Organization and Design, the and instruction requires x2

as the operand for arithmetic operation, but the processor cannot supply x2 in time, the value

of sub instruction is only available after write back. The next instruciont will also encounter

the same issue.

The method to dealing with this issue is to add a Forwarding Unit, which forwards or bypass

the alu results, or registered one to the alu input ports, so that the alu could obtain the operands

in time.

We just simply inspect rs1 in the EX stage, if rd in MEM stage equals to it, a forward is

required, it’s the case 1a in the book, the ALU result in MEM stage is forwarded to ALU

operand 1. Else if rd in WB stage equals to it, a further registered one is required to be

forwarded, it’s the case 2a.

It’s just the situation of ALU operand 1, the operand 2 has the similar situation, but a further

condition is must. in RISC-V, I-type does not has the rs2 filed, it will interfere the forwarding,

so, if we detect current instruction is of I-type, no forward is taken, it’s the additional

condition.

2.2.3 Control Hazard: Branch Prediction

Branch prediction is a technique used in CPU design that attempts to guess the outcome of a

conditional operation and prepare for the most likely result. A digital circuit that performs

this operation is known as a branch predictor. It is an important component of modern CPU

architectures.

Let’s take the process without branch prediction. The branch result is available only when

the process get the result from branch testing unit at the phase of Execution, there is 3 cycles

delay after PC get changed (PC=>IF=>ID=>EX). As the branch instruction was fill into the

pipeline, and the branch result is not available, the instructions below will also fill into the

pipeline, regardless if the branch will be taken or not. That’s the case that we predict the

branch will always not be taken, additional cycles will be wasted if the branch is taken.

The basic branch prediction scheme is 1-bit prediction buffer which store the history branch

result for corresponding address or low-order address.

We don’t know, in fact, if the prediction is the right one—it may have been put there by

another conditional branch that has the same low-order address bits. However, this doesn’t

affect correctness. Prediction is just a hint that we hope is correct, so fetching begins in the

predicted direction. If the hint turns out to be wrong, the incorrectly predicted instructions

are deleted, the prediction bit is inverted and stored back, and the proper sequence is fetched

and executed.

For most cases, the iteration use the same address (offset in RISC-V) for branching, and

repeat considerable times. Branch prediction mechanism will save clock cycles in this

situation.

11

Predict taken

Predict not taken Predict not taken

Predict taken

Taken

Not Taken

Taken

Not

Taken

Taken

Not Taken

TakenNot taken

Figure 2.6 State transition for 2-bit dynamic prediction

The figure above shows the state transition diagram for 2-bit branch prediction, only after 2

branch taken action, the prediction unit assert a branch indication. It’s impelented by using a

simple 2-bit counter, the counter value 0,1 deassert the prediction, while the counter value

2,3 assert the prediction.

2.2.4 Architecture Hazard: Stall

2.3 Support for RV32I and RV64I

2.3.1 Design Diagram

PC

Instruction
Memory

Read

address

Instruction

[31:0]

Registers

Read

register 1

Read

register 2

Write

register

Write

data

Imm
Gen ALU

control

M

U

X

M

U

X

ALU ALU
result

Read

data 2

Read

data 1

Data
memory

Address

Write

data

Read

data
M

U

X

1

0

Control

Ins tr_I D

Ins tr

ALUOpSel

Ins tr [6:0]

Ins tr_WB

Ins tr [24:20]

Ins tr [19:15]

RegWrite

ALUSr c

Me mWrite

Me mTo Re g

Me mRead

4

Branch Take n

E
X

M

W
B

M

W
B

W
B

Hazard
detection unit

Fowarding
unit

IF/ID

ID/EX

EX/MEM

MEM/WB

Ins tr_E X Instr_MEM

Ins tr_WB

+ Sum

Shift
left 1

Branch
test

+

M

U

X

Fo rward _A

Fo rward _B

Branch
prediction unit

IF_Flush

IF_pre dict

RegWrite

M

U

X

M

U

X

Reg isterFi le

Forw ard ing

RegWrite

Branch

PC_Sr c

PC_write

M

U

X

0

PC_ID

0

PC

alu1 _src

alu2 _src

Memory
mapping

Strobe

ALUOp32 b

Figure 2.7 RV32I/RV64I design diagram

12

The red hinted lines are logic units introduced to fully support the instructions in RV32I and

RV42I. It will be talked later.

2.3.2 Modification Overview

There are modified units and additional units for fully supporting RV32I and RV64I. They

are:

i) ALUOp32b for ALU control unit, it’s designed for RV64I to support word operation;

ii) Memory mapping unit for Byte, Halfword, Word operation of data memory, more

details , refer to 3.2.3 Strobe Unit;

iii) ALU op1 MUX logic, PC and 0 are added to the MUX inputs, LUI instruction use 0

as op1, and AUIPC instruction use PC as op1.

iv) Besides, ImmGen, Control, ALU, Memory, and BranchTest units are required to be

updated for wider instructions, the details of them will be talked in the later section –

Functional Description.

2.3.3 ALU control unit

To simplify the design of CPU, control path and data path are introduced. The ALU control

unit control the ALU operation mode for all the instructions, the alu_op_sel signal in this

module inherit the funct3 filed and instr[30] in R-type instruction in RV32I ISA.

alu_op_sel function

0000 Add

1000 Subtract

0001 Shift Left Logical

0010 Set Less Than

0011 Set Less Than Unsigned

0100 Exclusive Or

0101 Shift Right Logical

1101 Shift Right Arithmetic

0110 Or

0111 And

2.3.4 Branch and Jump

RISC-V instructions are 4 bytes long, the RISC-V branch instructions are designed to stretch

their reach by having the PC-relative address refer to the number of words between the branch

and the target instruction, rather than the number of bytes. However, the RISC-V architects

wanted to support the possibility of instructions that are only 2 bytes long, so the branch

instructions represent the number of halfwords between the branch and the branch target1.

1 Computer Organization and Design RISC-V Edition: P264

13

Thus, the 20-bit address field in the jal instruction can encode a distance of ±219 halfwords,

or ±1 MiB from the current PC. Similarly, the 12-bit field in the conditional branch

instructions is also a halfword address, meaning that it represents a 13-bit byte address.

jal

beq

jalr

The term offset in RISC-V is in Bytes, so the offset filed in jal and beq instruction use [12:1]

rather than [11:0], which means that the content in the offset filed concatenated with 0

becomes the true offset in Bytes.

Note that JALR has the offset in Bytes instead of Halfword, the PC souces has the following

 Increment (+4 in physical address)

 Branch target (require shift left 1)

 JAL (require shift left)

 JALR (no shift required)

2.3.5 Strobe Unit

Strobe unit is designed to implement instructions about Load and Store, they are:

 LB, LH, LW, LBU, LHU, SB, SH, SW in RV32I,

 LD, LWU, SD in RV64I.

The LD instruction loads a 64-bit value from memory into register rd for RV64I.

The LW instruction loads a 32-bit value from memory and sign-extends this to 64 bits before

storing it in register rd for RV64I.

The LWU instruction, on the other hand, zero-extends the 32-bit value from memory for

RV64I.

The LH and LHU instruction are defined analogously for 16-bit values, as are LB and LBU

for 8-bit values. The SD, SW, SH, and SB instructions store 64-bit, 32-bit, 16-bit, and 8-bit

values from the low bits of register rs2 to memory respectively.

14

The offset filed is in Bytes. for SD or LD instruction, the offset must be the multiplies of 8

(A doubleword is 8 bytes), for example,

ld x9, 240(x10) // Temporary reg x9 gets A[30]

lw x10, 240(x10) // Temporary reg x9 gets A[30][31:0]

It’s important that the offset must be aligned for simplicity, unaligned access of memory costs

additional clock cycles thus slows the CPU.

Assume that the data accessed is aligned in memory, they are stored or fetched in special

rules, just take the following example to understand2.

add $s3, $zero, $zero

This performs the addition $s3 = 0 + 0, effectively setting the register $s3 to a value of zero.

lb $t0, 1($s3)

This loads a byte from a location in memory into the register $t0. The memory address is

given by 1($s3), which means the address $s3+1. This would be the 0+1=1st byte in memory.

Since we have a big-endian architecture, we read bytes the 4-byte chunks "big end first".

byte: 0 1 2 3

 00 90 12 A0

The 0th byte is 00, and the 1st byte is 90. So we load the byte 90 into $t0.

sb $t0, 6($s3)

This stores a byte from the register $t0 into a memory address given by 6($s3). Again this

means the address $s3+6.

byte: 4 5 6 7

 FF FF FF FF

2 https://stackoverflow.com/questions/28707615/loading-and-storing-bytes-in-mips

15

becomes

byte: 4 5 6 7

 FF FF 90 FF

Now, what if the architecture was little-endian? (Which is the endian sequence of RISC-V)

This would mean bytes are arranged "little end first" in memory, so the effect of the 2nd and

3rd instructions change.

lb $t0, 1($s3)

This loads the byte in memory address 1 into register $t0. But now the addresses are "little

end first", so we read 12 into the register instead.

byte: 3 2 1 0

 00 90 12 A0

Next...

sb $t0, 6($s3)

This stores the byte in register $t0, which is 12 into a memory address 6. Again with little-

endian architecture:

byte: 7 6 5 4

 FF FF FF FF

becomes

byte: 7 6 5 4

 FF 12 FF FF

The strobe unit is designed to read 0x90 from the bit range of [23:16], the second byte in big-

endian, of the slice of physical address 0 of memory and, to write 0x90 to the correct part of

the correct address.

For sb, lb instruction, the offset must be the multiply of 1, the lower 3 bits are used to

determine the location of byte in 64 bits to store and fetch. For sh, lh, lhu instruction, the

offset must be the multiply of 2, the lower 2 bits are used to determine the location of

halfword in 64 bits. For sw, lw, lwu instruction, the occasion becomes 4, and 1 bit. For sd, ld

instruction, the whole 64 bits are used, the offset is the multiply of 8.

2.4 Support for RV32M and RV64M

2.4.1 Booth-Wallace Multiplier

This part mainly refers to 《计算机体系结构基础》https://github.com/foxsen/archbase,

which compiles with CC BY-NC 4.0, thanks to the contributors.

https://github.com/foxsen/archbase
https://creativecommons.org/licenses/by-nc/4.0/deed.zh

16

Signed Multiplication

Suppose there is a 8x8 multiplication, the result for signed multiplication is

[𝑋 ⋅ 𝑌]2𝑐 = −𝑋 ⋅ 𝑦7 ⋅ 27 + 𝑋 ⋅ 𝑦6 ⋅ 26 + ⋯ + 𝑋 ⋅ 𝑦1 ⋅ 21 + 𝑋 ⋅ 𝑦0 ⋅ 20

= [𝑋]2𝑐 ⋅ (−𝑦7 ⋅ 27 + 𝑦6 ⋅ 26 + ⋯ + 𝑦1 ⋅ 21 + 𝑦0 ⋅ 20)

Where, 2c means 2’s complement, the sign will be omitted in the subsequent expression, only

signed multiplication is talked at present.

Consider the following example, -13*6=-78, where, -13 is multiplicand(X), and 6 is

multiplier(Y). The last partial product is zero, it’s omitted in the figure.

1 1 1 1 0 0 1 1

0 0 0 0 0 1 1 0X

1 1 1 0 1 1 0 0 1 0

... 1 1 1 1 1 0 0 1 1

... 1 1 1 1 0 0 1 1

+

+

-

The following example is 6*-13=-78, which has the same result.

0 0 0 0 1 1 0 1

1 1 1 1 1 0 1 0X

1 1 1 1 1 0 1 1 0 0 1 0

+

+

-

+

+

+

The differences from the unsigned multiplication algorithm are:

1). Each partial product is required to be sign expanded;

2). The last partial product is generated from subtraction instead of addition.

Radix-2 Booth Algorithm3

Booth multipliers transform the multiplications to

[𝑋 ⋅ 𝑌]2𝑐 = [𝑋]2𝑐 ⋅ (−𝑦7 ⋅ 27 + 𝑦6 ⋅ 26 + ⋯ + 𝑦1 ⋅ 21 + 𝑦0 ⋅ 20)

= −𝑦7 ⋅ 27 + 𝑦6 ⋅ 26 − 𝑦6 ⋅ 26 + ⋯ + 𝑦1 ⋅ 22 − 𝑦1 ⋅ 21 + 𝑦0 ⋅ 21 − 𝑦0 ⋅ 20

3 计算机体系结构基础, 胡伟武: P210

17

= (𝑦6 − 𝑦7) ⋅ 27 + (𝑦5 − 𝑦6) ⋅ 26 + ⋯ + (𝑦0 − 𝑦1) ⋅ 21 + (𝑦−1 − 𝑦0) ⋅ 20

Where, 𝑦−1 = 0 . After transformation, the regularity is revealed, no additional multiply -1

(subtraction) is required for MSB partial product. It’s also called Radix-2 Booth Algorithm,

for we use 2-bits to generate a corresponding 1-bit “multiplier” for the generation of each

partial product.

The partial product is generated determined by “𝑦𝑖𝑦𝑖−1”:

𝒚𝒊 𝒚𝒊−𝟏 𝒛𝒊 comment z neg

0 0 0 No add required. 0 0

0 1 1 +X (2’s complement) 1 0

1 0 -1 -X (2’s complement) 1 1

1 1 0 No add required. 0 0

Take the following example into consideration, which calculate 13x6:

0 0 0 0 1 1 0 1

0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 (00) null

0X

1 1 1 0 0 1 1 (10) -X

0 0 0 0 0 0 (11) null

(00) null0 0 0 0

1 0 1 0 0 1 1 1 0

(01) +X0 1 1 0 1

Note that, the grayed “1” is not the real carry, it’s because I omitted the expanded sign bit of

the partial product, the result must be possitive.

Radix-4 Booth Algorithm

Let’s talk about Radix-4 Booth Algorithm, which is the most common implementation in

CPU, and DSP unit.

[𝑋 ⋅ 𝑌]2𝑐 = (𝑦5 + 𝑦6 − 2𝑦7) ⋅ 26 + (𝑦3 + 𝑦4 − 2𝑦5) ⋅ 24 + ⋯ + (𝑦−1 + 𝑦0 − 2𝑦1) ⋅ 2 0

Rather than divde 2 partial product together, Radix-4 Booth Algorith divide every 3 partial

product together and perform sum every 2 bits, or say, shift 2 bits for the multipliers. Radix-

4 means that, it set the multipliers as a set of digits 0–3 instead of just 0,1 (basic array

multiplications, or radix-2 booth algorithm). This cuts the number of partial products in half

because you are multiplying by two binary bits at once. However, it requires multiplying by

3 which is difficult. (Multiplication by 0, 1, or 2 is trivial because they only involve simple

18

shifts. Three is the hard one4.) To avoid multiplying by 3, we use Booth’s observation and

recode the digit set to be 2, 1, 0, ‐1, and ‐2.

𝒚𝒊+𝟏 𝒚𝒊 𝒚𝒊−𝟏 𝒛𝒊 comment z0 z1 neg

0 0 0 0 No add required. 0 0 0

0 0 1 1 +X (2’s complement) 1 0 0

0 1 0 1 +X (2’s complement) 1 0 0

0 1 1 2 +2X (2’s complement) 0 1 0

1 0 0 -2 -2X (2’s complement) 0 1 1

1 0 1 -1 -X (2’s complement) 1 0 1

1 1 0 -1 -X (2’s complement) 1 0 1

1 1 1 0 No add required. 0 0 0

The column z0, z1, neg is the signals in the implementation. where, z0means that there is a

1-bit shift, z1 means that there is a 2-bits shift, neg means that there is a subtraction which is

implemented by bitwise inverse then plus 1 (neg signal in this design).

The Boolean expression of this select signals can be inferred from the truth table, where,

10 i iz y y −= , 1 1 1 11 (~) (~) ~i i i i i iz y yy y y y+ − + −= + , 1 1·(~ ())i i iyn g ye y + −=

The logic is implemented in the module booth_encoder, which generates these three signals

for booth algorithm.

Once we obtain the encoded multipliers, the next thing we need to do is perform add / subtract

/ shift to generate the partial product which will be sended to Wallace tree. To achieve this,

a moudule named booth_selector is designed, which generates a single bit of partial product.

It all depends on the bits of multiplicands and the encoded multipliers.

The theory is boring, let’s take an example!

The following example is the singed 13 times 6:

0 0 0 0 1 1 0 1

0 0 0 0 0 1 1 0

1 1 1 0 0 1 0 1 (100) -2X

0X

0 1 1 0 1 0 (011) +2X

0 0 0 0 (000) null

(000) null0 0

1 0 1 0 0 1 1 1 0

+1

Step1: Add trailing zero to multiplier 00000110(0);

4 https://www.brown.edu/Departments/Engineering/Courses/En164/BoothRadix4.pdf

19

Step2: Take 100 for booth encoding (the
iy s are all underlined), 100 means -2X, where z0=0,

z1=1, neg=1;

Step3: Generate the 1st partial product, the multiplicand is shifted by 1, or in other words,

the partial product use the lower 1 bits of multiplicand (it’s the method implemented in this

design), and obtain 00011010, and due to the neg sign is asserted, the partial product is

inversed to 11100101, and there is required also plus 1 (neg), the neg value is stored into an

register n, and sent to a ripple carry adder which generates the partial product with 2’s

complements.

 RCA #(65) u_rca(
 .a (pp[u]),
 .b ({64'd0,n[u]}),
 .cin (1'b0),
 .sum (pp2c[u]),
 .cout ()
);

Step4: Inspect the next three bits, 011 measn +2X, no 2’s complement transform here.

Step5: Go futher, and the next two partial multipliers are 000 and 000, which means no

actions required.

Step6: Add the partial products, and we obtain 01001110 (8’d78)

You may notice that there’s a solid line between 0000 and 00, that’s what will talk in the next

section.

The Booth encoding reduced the counts of addition operation from N into N/2, half of the

addition is replaced by simple bit shift or NOP (null operation).

Wallace Tree5

Back to the example in the last section, the solid line is placed for Wallace tree multiplication.

The Wallace tree takes every 3 inputs of the partial products of Booth algorithm, and outputs

2 result for the next stage. A kind of 32bits Wallace tree is illustrated in Figure 2.8, go on take

this example, 11100101 is sent to the most right CSA, so was 01101000 and 00000000 (the

3rd partial product), 00000000 (the 4th partial product under the solid line) is sent to the right

2th CSA unit.

5 计算机体系结构基础, 胡伟武: P215

20

0 0 0 0 1 1 0 1

0 0 0 0 0 1 1 0

1 1 1 0 0 1 0 1 (100) -2X

0X

0 1 1 0 1 0 (011) +2X

0 0 0 0 (000) null

(000) null0 0

1 0 1 0 0 1 1 1 0

+1

The Wallace tree is build by the following reasoning, assuming already booth encoded.

level isolated remain in out

0 0 2 10*3 10*2

1 1 1 7*3 7*2

2 1 0 5*3 5*2

3 0 1 3*3 3*2

4 0 1 2*3 2*2

5 0 2 1*3 1*2

6 1 1 1*3 1*2

7 1 0 1*3 1*2

The Wallace tree for multiplication has 3 inputs a, b, cin, and 2 outputs sum, cout. It use CSA

(Carray Save Adder) instead of RCA (Ripple Carry Adder), where the carray is saved for

futher addition, not rippled to the higher bits, it saves the latency.

21

CSA CSA CSA CSA CSA CSA CSA CSA CSA CSA

CSACSACSACSACSACSACSA

CSA CSACSACSACSA

CSACSA

CSACSA

CSA

CSA

CSA

CSA

Figure 2.8 A 32bit-Wallace tree

The Wallace tree for this design is illustrated above, 3 registers are inserted into the output

of second stage(reserve enough setup slack for booth encoder), fifth stage, and the last stage

for pipelining, if the timing is not met, the pipelining states should be increased, I don’t have

a clear idea about that currently.

Full Adder

The logic architecture chosen to implement full adder is talked below.

a

b

cin

s

cout

b
a

cin

s

cout

Figure 2.9 Full adder using logic gates

The left side one is the basic connection, where,

𝑠 = 𝑎 ⊕ 𝑏 ⊕ 𝑐𝑖𝑛, 𝑐𝑜𝑢𝑡 = 𝑎 ⋅ 𝑏 + (𝑎 ⊕ 𝑏) ⋅ 𝑐

While the right side is the improved implementation, where

22

𝑠 = 𝑎 ⊕ 𝑏 ⊕ 𝑐𝑖𝑛, 𝑐𝑜𝑢𝑡 = (𝑎 ⊕ 𝑏) ? 𝑐𝑖𝑛 ∶ (𝑎 ⋅ 𝑏) = 𝑎 ⋅ 𝑏 + (𝑎 ⊕ 𝑏) ⋅ 𝑐𝑖𝑛

It takes the advantage of the feature that

𝑎 ⊕ 𝑏̅̅ ̅̅ ̅̅ ̅̅ = 𝑎 ⋅ 𝑏 + 𝑎̅ ⋅ 𝑏̅, and 1 + 𝐴 = 1

Consider the perfomance, the left implementation has a logic stage of 3, while the right one

also has it of 3 (the MUX takes 2).

Consider the area, the left implementation consume the MOSFET counts of 8+8+6+6+6=34,

while the right one consume it of 8+8+6+14=36.

In Xilinx FPGA, there are proprietary MUX units, the CARRY4 Chain adopts the right one

to save LUTs resources.

2.4.2 SRT Divider

Overview

This part mainly refers to Computer arithmetic algorithms, Koren, Israel.

SRT division is a kind of improved non-restoring division algorithm, which is a slow division

method, say, generate only 1-bit or several fixed bits in an iteration. The slow division method

use the reccurence formula for generating residual remainder, adjusting the quotient bit to

make the reccurence converge.

I will cut into this section from Restoring Dvision which is the basic reccuerence division,

then talk about Non-restoring Division, then talk about the Radix-2 SRT Division, and finally

introduce the Radix-4 SRT Division which is adopted as the divisior module of the CPU.

Before the beginning of this section, it’s necessary to introduce the basic concept and the

recurrence formula.

We perform the following division,

𝑋/𝐷 = (𝑄, 𝑅)

where, X is the dividend, D is the divisor, Q is the quotient, R is the Remainder. And we

define 𝑞𝑖 , 𝑟𝑖 as the i-th most significant quotient digit, and residual remainder (procedure

remainder), separately.

The reccurence formula is defined as follows:

𝑟𝑖 = 𝛽𝑟𝑖−1 − 𝑞𝑖 ⋅ 𝐷

where, 𝛽 is the base, which is 2 in radix-2 algorithm and becomes to 4 in radix-4 algorithm.

Restoring Division6

The final 𝑟𝑖 is the remainder we want, and the initial 𝑟𝑖 is X, consider 𝛽 = 2,

6 https://en.wikipedia.org/wiki/Division_algorithm

23

𝑅 = 2𝑟𝑛−1 − 𝑞𝑛 ⋅ 𝐷 = 22𝑟𝑛−2 − 21𝑞𝑛−1𝐷 − 𝑞𝑛𝐷 = ⋯ = 2𝑛𝑋 − 𝑄𝐷

Before the recurrence, we must shift left D for n bits, and after the recurrence, we should also

shift right R for n bits, this is a very important key point which will be talked further in the

SRT division algorithm.

The algorithm is described as follows:

R := X

D := D << n -- R and D need twice the word width of N and Q

for i := n − 1 .. 0 do -- For example 31..0 for 32 bits

 R := 2 * R − D -- Trial subtraction from shifted value
(multiplication by 2 is a shift in binary representation)

 if R >= 0 then

 q(i) := 1 -- Result-bit 1

 else

 q(i) := 0 -- Result-bit 0

 R := R + D -- New partial remainder is (restored) shifted value

 end

end

-- Where: X = dividend, D = divisor, n = #bits, R = partial remainder, q(i) =
bit #i of quotient from MSB

The selection of quotient digit can be described as follows, which has the digit set of {0,1}:

𝑞𝑖 = {
1 , 𝑖𝑓 2𝑟𝑖−1 ≥ 𝐷
0 , 𝑖𝑓 2𝑟𝑖−1 < 𝐷

Examine the following example which calculate 13/5=(2,3):

0 0 0 0 1 1 0 1

0 1 0 1 0 0 0 0

0 0 0 1 1 0 1 0 <D

D

0 0 1 1 0 1 0 0

0 1 1 0 1 0 0 0

0 0 0 0 0 0 1 1

0 0 0 1 1 0 0 0

r0

2r0 q0=0r1

2r1 <D q1=0r2

2r2 >=D q2=1

r3 -D

0 0 1 1 0 0 0 0 2r3r4

R

<D q3=0

Thus, we obtain Q=0010, and R=0110, that’s the correct result. Note that the MSB of quotient

is first produced.

The term restoring means that we should restore residual remainder if q equals to zero.

24

Non-restoring Division

The Non-restoring Division uses the digit set {-1,1} instead of {0,1}, the advantage is that

when implemented in hardware there is only one decision and addition/subtraction per

quotient bit, no restoring step is required. The basic radix 2 Non-restoring Division algorithm

is:

R := X

D := D << n -- R and D need twice the word width of N and Q

for i = n − 1 .. 0 do -- for example 31..0 for 32 bits

 if R >= 0 then

 q(i) := +1

 R := 2 * R − D

 else

 q(i) := −1

 R := 2 * R + D

 end if

end

-- Note: X=dividend, D=divisor, n=#bits, R=partial remainder, q(i)=bit #i of
quotient from MSB.

The selection of quotient digit can be described as follows, which has the digit set of {-1,1}:

𝑞𝑖 = {
1 , 𝑖𝑓 2𝑟𝑖−1 ≥ 𝐷

−1 , 𝑖𝑓 2𝑟𝑖−1 < 𝐷

Following this algorithm, the quotient is in a non-standard form consisting of digits of −1

and +1. This form needs to be converted to binary to form the final quotient. Example:

0. Start: 𝑄 = 1111̅11̅11̅

1. Form the positive terms: 𝑃 = 11101010

2. Mask the negative terms: 𝑀 = 00010101

3. Subtract: P-M=Q=11010101

The quotient computed by this algorithm is always odd, and the remainder is in the range

−𝐷 ≤ 𝑅 ≤ 𝐷 , for example 5/2=(3,-1). Sometimes, we should convert the remainder to

positive, just add D to R, and subtract 1 from Q (for unsigned algorithm).

Radix-2 SRT Division

The SRT Division algorithm allows 0 to be the quotient digit for which no add/subtract

operation is needed, the digit set become {-1,0,1}. The quotient digit selecting rule is changed

into:

𝑞𝑖 = {

 1 , 𝑖𝑓 2𝑟𝑖−1 ≥ 𝐷
 0 , 𝑖𝑓 − 𝐷 ≤ 2𝑟𝑖−1 < 𝐷

−1 , 𝑖𝑓 2𝑟𝑖−1 < −𝐷

25

In the Restoring and Non-restoring algorithm, the total iteration is N, the bit width of the

dividend. But the case in SRT algorithm is different, we do not shift N bits for the initial

residual remainder, most of the iteration is pointless.

In the SRT algorithm, the fist step is to normalize Dividend and Divisor, which accelerates

the reccurence process, the total iteration stages is determined by this step.

Let’s consider an example, which calculates 11/3=(3,2), both dividend and divisor are of 8

bits, 8’d11=00001011, 8’d3=00000011.

0. 0 0 1 0 1 1 0

0. 1 1 0 0 0 0 0D

r0

m= 5

n= 1

There is 4 leading zeros of the dividend, 11, and 6 leading zeros of the divisor. We just shift

5 bits for divisor to obtain 0.110000, and shift 1 bit for the dividend and obtain 0.0010110.

The total iteration is 5-1=4, which is the shift bits of divisor subtracted by the shift bits of

dividend. If the previous one is smaller than the later one, it means that the dividend is smaller

than the divisor, no iteration is needed.

After normalized, the comparator will be more simply, full width comparator is not needed

any more. That’s because we constrain D to [1/2,1), which is 0.1xxxx, and 1.0xxxx(neg),

thus, only 2 bits are required to compare. In some cases, for example, the dividend X is larger

than 1/2, the shifted remainder has an extra integer bit, thus, 3 bits are required.

0. 0 0 1 0 1 1 0

0. 1 1 0 0 0 0 0

0. 0 1 0 1 1 0 0 <1/2

D

r0

2r0 q1= 0r1

m= 5

n= 1

The second step is the reccurence, recall the recurrence formula: 𝑟𝑖 = 2𝑟𝑖−1 − 𝑞𝑖 ⋅ 𝐷. The

iteration steps is illustrated following.

0. 0 0 1 0 1 1 0

0. 1 1 0 0 0 0 0

0. 0 1 0 1 1 0 0 <1/2

D

r0

2r0 q1= 0

r2

q2= 1

r1

2r1 0. 1 0 1 1 0 0 0

1. 1 1 1 0 0 0 0

1. 1 1 0 0 0 0 0

q3= 02r2r3

m= 5

n= 1

>=1/2

-D 1. 1 1 1 1 0 0 0
>=-1/2

2r3r4 >=-1/2 q4= 0

The quotient has no -1 as its digit, so there is no conversion to the standard form. Notice that

the remainder is negative, which is not what we want, so we plus D to r4, and subtract 1 from

quotient:

26

0. 0 0 1 0 1 1 0

0. 1 1 0 0 0 0 0

0. 0 1 0 1 1 0 0 <1/2

D

0. 1 0 0 0 0 0 0

r0

2r0 q1= 0

r2

q2= 1

r1

R

2r1 0. 1 0 1 1 0 0 0

1. 1 1 1 0 0 0 0

1. 1 1 0 0 0 0 0

q3= 02r2r3

+D

m= 5

n= 1

>=1/2

-D 1. 1 1 1 1 0 0 0
>=-1/2

2r3r4 >=-1/2 q4= 0

q -

Do not forget shift right R for m-bits, which is 5 in this example, and we obtain 00000010

(8’d2) as the final remainder, 00000011 (8’d3) as the final quotient.

As for the signed case, the quotient is selected by the following rule:

𝑞𝑖 = {

0 𝑖𝑓 |2𝑟𝑖−1| < 1/2

 1 𝑖𝑓 |2𝑟𝑖−1| ≥ 1/2 , 𝑟𝑖−1 𝑎𝑛𝑑 𝐷 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑖𝑔𝑛.

−1 𝑖𝑓 |2𝑟𝑖−1| ≥ 1/2, 𝑟𝑖−1 𝑎𝑛𝑑 𝐷 ℎ𝑎𝑣𝑒 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑖𝑔𝑛.

Radix-4 SRT Division

Radix-4 SRT Division is similar to radix-2, the only several differences are:

1. Normalization.

2. The selection of quotient digit.

3. On-the-fly conversion.

The radix-4 SRT use every 2 bits for iteration, the iteration is also determined by the shifted

bits. Use m to denote the shifted bits for the divisor, and n for the dividend. In radix-2, the

total iteration is (m-n), but for radix-4, the total iteration is (m-n)/2. Besides, m and n must

be both odd or both even or there will be unpredictable events.

Assume the dividend is 23, and the divisor is 5, which is an unsigned case, the shift will be:

0 0. 0 0 1 0 1 1 1

0 0. 1 0 1 0 0 0 0D

r0

m= 4

n= 0

Where, n=0, it’s different from the case in radix-2, n will be 1 in radix-2. The residual

remainder should be sign expanded, if the previous residual remainder 𝑟𝑖−1 is larger than 1/4,

which is 0.01xxxx, then 4𝑟𝑖−1 will be 1.xxxx, the digit 1 masks the sign bit.

The quotient digit selection is more complex than the radix-2 algorithm, a large QDS(quotient

digit selection) table is used to determine the quotient digit. Let’s talk about the selection

rules, and build the QDS table for implementation.

27

The digit set we choose for Radix-4 SRT division is {-2,-1,0,1,2}, which means that

redundancy is k=2/(4-1)=2/3. k is the redundancy factor, which reduce the size of allowable

region for the partial remainder. The partial remainder is limited to −𝑘 ⋅ 𝐷 ≤ 𝑟𝑖 ≤ 𝑘 ⋅ 𝐷.

We use P to denote the previous partial remainder 4𝑟𝑖−1, 𝑃 = 𝑟𝑖 + 𝑞 ⋅ 𝐷, thus,

(−𝑘 + 𝑞) ⋅ 𝐷 ≤ 𝑃 ≤ (𝑘 + 𝑞) ⋅ 𝐷

Plot the relationship between P and D, the graph is called P-D plot, the x and y coordinates

are both inputs to the QDS table, the quotient digit is the only output.

minD
maxD

(2 / 3 2) D+ 

(2 / 3 1) D+ 

(2 / 3 2) D− + 

(2 / 3 1) D− + 

D

14 iP r−=

q=2

q=1

We can construct such a QDS table as follow. Thanks to the normalization, we can only

examine only several bits to determine the quotient digits!

28

0.1000 0.1010 0.1100 0.1110 1.0000

00.001

00.010

00.011

00.100

00.101

00.110

00.111

01.000

01.001

01.010

01.011

01.100

01.101

14 iP r−=

8/3D 5/3D

4/3D

2/3D

1/3D

2

2

2

2

2 2

2

2

2

inaccessible

1

1

1

1

1 or 2

1 or 2

1 or 2

1 or 2

1

1111

0 or 10 or 10 or 10 or 1

0 or 1 0 or 1

11

11

0 0

0 0 0 0

0

In this PD plot, the quotient digit is selected associated with the coordinate point that is on

its lower-left, for example, if D=0.1010, and P=00.011, we should choose 1 as quotient digit,

however if D=0.1010, and P=00.010, we will choose 0.

The comment that 0or1, or 1or2 means that the quotient digit can be selected as either 0 or 1,

the bold solid line is one kind of selection scheme, which allows more 0 and 1, less 2, thus

simplified the operation.

Once we obtain the quotient digit, we can keep iterating.

0 0. 0 0 1 0 1 1 1

0 0. 1 0 1 0 0 0 0

0 0. 1 0 1 1 1 0 0

D

0 0. 0 1 1 0 0 0 0

r0

4r0 q1= 1

4r1 q2= 1

r1

R

0 0. 0 0 0 1 1 0 0

1 1. 1 1 0 0 0 0 0r2

+D

m= 4

n= 0

-D

0 0. 0 1 1 0 0 0 0

q -

-D

The quotient is selected from the QDS table instead of comparation to 1/2. The first

reccurence, the index of P is 00.101, and index of D is 0.1010, so we choose 1 as the quotient

digit and thus subtract D from 4r0 to obtain r1.

Conver the quotient to normal form:

29

11 in radix-4 is 0101 in radix-2, there is no negative items, no subtraction is needed.

The remainder r2 is negative, so we should plus D to it, and we obtain 00.0110000 as final

remainder, 0100 as final quotient. The final remainder 00.0110000 should shift right m=4,

and we obtain 00000011=3. The equation is 23/5=(4,3).

Is this section finished? We haven’t discuss the negative case. Consider 23/-5=(-4,3),

0 0. 0 0 1 0 1 1 1

1 1. 0 1 1 0 0 0 0

0 0. 1 0 1 1 1 0 0

D

r0

4r0 q1= ?r1

m= 4

n= 0

How do we select quotient digit? We should first convert D into positice, which is 0.1010,

and then use the negative QDS table.

0.1000 0.1010 0.1100 0.1110 1.0000

10.011

10.100

10.101

10.110

10.111

11.000

11.001

11.010

11.011

11.100

11.101

11.110

11.111

14 iP r−=

-8/3D
-5/3D

-4/3D

-2/3D

-1/3D

0

inaccessible

-2

-1

-1

1

0

-1 or -2

-1 0 or -1 0 or -1

0 or -1 0 or -1 0 or -1 0 or -1

0 000

-1 -1

-1

-1 or -2

-1 or -2

-1 or -2

-1

-1

-1

-2

-2

-2

-2 -2

-2

-2

-2

0 0

-1 -1 -1 -1

Instead of with its lower-left, the upper-left coordinate that quotient digit is associated, for

example, if D=0.1010, and P=11.101, we should choose -1 as quotient digit, in the positive

PD plot, if D=0.1010, and P=00.011, we choose 1.

The following example is 23/-5=(-4,3), the process is similar to the unsigned SRT.

30

0 0. 0 0 1 0 1 1 1

1 1. 0 1 1 0 0 0 0

0 0. 1 0 1 1 1 0 0

D

0 0. 0 1 1 0 0 0 0

r0

4r0 q1= -1

4r1 q2= -1

r1

R

0 0. 0 0 0 1 1 0 0

1 1. 1 1 0 0 0 0 0r2

-D

m= 4

n= 0

+D

0 0. 0 1 1 0 0 0 0

q - + -

+D

0 0. 1 0 1 0 0 0 0D

Note that, due to the divisor is negative, q should plus 1, and R should subtract D(which is

negative).

And the example for -23/5=(-5,2):

1 1. 1 1 0 1 0 0 1

0 0. 1 0 1 0 0 0 0

1 1. 0 1 0 0 1 0 0

D

0 0. 0 1 0 0 0 0 0

r0

4r0 q1= -1

4r1 q2= 0

r1

R

1 1. 1 1 1 0 1 0 0

0 0. 0 1 0 0 0 0 0

r2

m= 4

n= 0

+D

1 1. 1 0 1 0 0 0 0

q -4-1=-5

+D

Note that, the sign of remainder has no cleart definition, for example, -29/-26, Matlab give -

3 as remainder, which keeps the remainder the same sign of dividend, while in python, it

keeps the remainder the same sign of divisor, and in some case, the remainder is set to be

positive. In the implementation, the remainder is always positive, which will give the result

23, -26*2+23=-29.

On-the-fly Conversion7

The redundant digit set has negative digit, and the quotient is not represent in standard form,

we should convert the non-standard form quotient to the standard one at the final step. But it

will cost additional cycles and chip area: for the subtraction, a full width carry adder is

required, the latency will be as large as N if ripple carray adder is applied, rr we can sacrifice

chip area and use a carry look-ahead adder.

On-the-fly conversion is designed to obtain the real-time conversion result. It uses only 2

Flip-flop and several combination logic units.

7 Ercegovac, and Lang. "On-the-fly conversion of redundant into conventional representations." IEEE

Transactions on Computers 100.7 (1987): 895-897.

31

The real Q can be represented as: 𝑄[𝑗] = ∑ 𝑞𝑖𝑟
−𝑖𝑗

𝑖=1 , and the updata equation: 𝑄[𝑗 + 1] =

𝑄[𝑗] + 𝑞𝑗+1𝑟−(𝑗+1), where, 𝑄[𝑗] means the real Q of the j-th iteration, 𝑞𝑖 is the quotient digit,

which is the redundatnt representation. Since 𝑞𝑗+1 can be negative:

𝑄[𝑗 + 1] = {
 𝑄[𝑗] + 𝑞𝑗+1𝑟−(𝑗+1) , 𝑖𝑓 𝑞𝑗+1 ≥ 0

𝑄[𝑗] − 𝑟−𝑗 + (𝑟 − |𝑞𝑗+1|)𝑟−(𝑗+1), 𝑖𝑓 𝑞𝑗+1 < 0

It has the disadvantage that a subtraction is required, the propagation from a carry is too slow,

thus we define another register 𝑄𝑀[𝑗] = 𝑄[𝑗] − 𝑟−𝑗, where QM means Quotient of Minus.

𝑄[𝑗 + 1] = {
 𝑄[𝑗] + 𝑞𝑗+1𝑟−(𝑗+1) , 𝑖𝑓 𝑞𝑗+1 ≥ 0

𝑄𝑀[𝑗] + (𝑟 − |𝑞𝑗+1|)𝑟−(𝑗+1), 𝑖𝑓 𝑞𝑗+1 < 0

Subtraction is replaced by sampling the register QM, the QM can be updated by:

𝑄𝑀[𝑗 + 1] = {
 𝑄[𝑗] + (𝑞𝑗+1 − 1)𝑟−(𝑗+1) , 𝑖𝑓 𝑞𝑗+1 > 0

𝑄𝑀[𝑗] + ((𝑟 − 1) − |𝑞𝑗+1|) 𝑟−(𝑗+1), 𝑖𝑓 𝑞𝑗+1 ≤ 0

The item 𝑟−(𝑗+1) can be implemented by concatenating 𝑞𝑗+1 behind the register Q or QM.

Thus, we obtain the On-the-fly Conversion updating formula:

𝑄[𝑗 + 1] = {
 {𝑄[𝑗], 𝑞𝑗+1} , 𝑖𝑓 𝑞𝑗+1 ≥ 0

{𝑄𝑀[𝑗], (𝑟 − |𝑞𝑗+1|)}, 𝑖𝑓 𝑞𝑗+1 ≤ 0

𝑄𝑀[𝑗 + 1] = {
 {𝑄[𝑗], 𝑞𝑗+1 − 1} , 𝑖𝑓 𝑞𝑗+1 > 0

{𝑄𝑀[𝑗], ((𝑟 − 1) − |𝑞𝑗+1|)}, 𝑖𝑓 𝑞𝑗+1 ≤ 0

The hardware implementation flow is described as follows:

QM reg

Q reg

Se
le

ct
io

n
C

on
tr

ol
 a

nd
 S

H
IF

T
_

IN
 D

at
a

G
en

er
at

io
n

Q QM

QM Q

Q

The initialization condition is:

𝑄 = 𝑄𝑀 = {
𝑎𝑙𝑙 0𝑠, 𝑖𝑓 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑎𝑙𝑙 1𝑠, 𝑖𝑓 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

32

We can simply deduce the sign of quotient just by the sign of dividend and divisor: if the

dividend and divisor has the opposite sign bit, we just initialize Q and QM to all 1s, or

initialize them to all 0s.

The generation data of SHIFT_IN can be deduced simply from the truth table, for the Radix-

4 case (Radix-2 is much simple):

𝑄[𝑗 + 1] = {
 {𝑄[𝑗], 𝑞} , 𝑖𝑓 𝑞 ≥ 0

 {𝑄𝑀[𝑗], 1′𝑏1, 𝑞[0]}, 𝑖𝑓 𝑞 ≤ 0

𝑄𝑀[𝑗 + 1] = {
 {𝑄[𝑗], 1′𝑏0, 𝑞[1]} , 𝑖𝑓 𝑞 > 0

 {𝑄𝑀[𝑗], ~𝑞} , 𝑖𝑓 𝑞 ≤ 0

There is also a Radix-2 example for the conversion, it convert 1101(-1)00 into 1100100,

which is 1101000-0000100.

𝒋 𝒒𝒋 Q[j] QM[j]

0 0 0

1 1 0.1 0.0

2 1 0.11 0.10

3 0 0.110 0.101

4 1 0.1101 0.1100

5 -1 0.11001 0.11000

6 0 0.110010 0.110001

7 0 0.1100100 0.1100011

That’s all for SRT division.

3 Functional Description

3.1 Files and Directory Structure

The figure below shows the layout of the directories in the example system.

<home directory> Local git directory.

│ clean.pl Perl script for cleaning temporary files.

├─core/ The implementation of CPU core.

│ ├─bench/ Bench codes for CPU core.

│ ├─rtl/ RTL codes.

│ ├─sim/ VCS+Verdi simulation environment.

│ └─vsim/ Modelsim simulation environment.

└─docs/ Related documentation.

3.2 RV32I Module Design

3.3 RV32M Module Design

33

4 Appendices

4.1 Appendix 1: Support of Instruction Set

The regularity of opcode:

inst[4:2]
000 001 010 011 100 101 110

111

(>32b) inst[6:5]

00 LOAD LOAD-FP custom-0 MISC-MEM OP_IMM AUIPC OP-IM-M32 48b

01 STORE STORE-FP custom-1 AMO OP LUI OP-32 64b

10 MADD MSUB NMSUB NMADD OP-FP reserved custom-2/rv128 48b

11 BRANCH JALR reserved JAL SYSTEM reserved custom-3/rv128 >=80b

Besides, inst[1:0]=11.

The example of RISC-V pseudo instructions can be found in risc-v specification v2.2 p109,

from which we can deal with the assembly codes.

RV32I Base Instruction Set

Total: 47

Type Order Instruction Description Compatibility

R-type

1 ADD Add. YES

2 SUB Subtract. YES

3 SLL Shift Left Logical. YES

4 SLT Set Less Than. YES

5 SLTU Set Less Than Unsigned. YES

6 XOR Exclusive or. YES

7 SRL Shift Right Logical. YES

8 SRA Shift Right Arithmetic. YES

9 OR Or. YES

10 AND And. YES

I-type

11 JALR Jump And Link Register. YES

12 LB Load Byte. YES

13 LH Load Halfword. YES

14 LW Load Word. YES

15 LBU Load Byte Unsigned. YES

16 LHU Load Halfword Unsigned. YES

17 ADDI Add Immediate. YES

18 SLTI Set Less Than Immediate. YES

19 SLTIU Set Less Than Immediate Unsigned. YES

20 XORI Exclusive Or Immediate. YES

21 ORI Or Immediate. YES

22 ANDI And Immediate. YES

23 SLLI Shift Left Logic Immediate. YES

34

24 SRLI Shift Right Logic Immediate. YES

25 SRAI Shift Right Arithmeic Immediate. YES

S-type

26 SB Store Byte. YES

27 SH Store Halfword. YES

28 SW Store Word. YES

B-type

29 BEQ Branch if Equal. YES

30 BNE Branch Not Equal. YES

31 BLT Branch Less Than. YES

32 BGE Branch Greater or Equal. YES

33 BLTU Branch Less Than Unsigned. YES

34 BGEU Branch Greater or Equal Unsigned. YES

U-type
35 LUI Load Upper Immediate. YES

36 AUIPC Add Upper Immediate to PC. YES

J-type 37 JAL Jump And Link. YES

other

38 FENCE NO

39 FENCE.I NO

40 ECALL NO

41 EBREAK NO

42 CSRRW NO

43 CSRRS NO

44 CSRRC NO

45 CSRRWI NO

46 CSRRSI NO

47 CSRRCI NO

RV64I Base Instruction Set (in addition to RV32I)

Total: 15

Type Order Instruction Description Compatibility

R-type

1 ADDW Add Word. YES

2 SUBW Subtract Word. YES

3 SLLW Shift Left Logical Word. YES

4 SRLW Set Less Than Word. YES

5 SRAW Set Less Than Unsigned Word. YES

I-type

6 LWU Load Word Unsigned. YES

7 LD Load Doubleword. YES

8 SLLI Shift Left Logical Immediate. YES

9 SRLI Shift Right Logical Immediate. YES

10 SRAI Shift Right Arithmetic Immediate. YES

11 ADDIW Add Immediate Word. YES

12 SLLIW Shift Left Logical Immediate Word. YES

13 SRLIW Shift Right Logical Immediate Word. YES

35

14 SRAIW Shift Right Arithmetic Immediate Word. YES

S-type 15 SD Store Doubleword. YES

RV32M Standard Extension

Total: 8

Type Order Instruction Description Compatibility

R-type

1 MUL Multiply.

2 MULH Multiply High.

3 MULHSU Multiply High Signed Unsigned.

4 MULHU Multiply High Unsigned.

5 DIV Divide.

6 DIVU Divide Unsigned.

7 REM Remainder.

8 REMU Remainder Unsigned.

RV64M Standard Extension (in addition to RV32M)

Total: 5

Type Order Instruction Description Compatibility

R-type

1 MULW Multiply Word.

2 DIVW Divide Word.

3 DIVUW Divide Unsigned Word.

4 REMW Remainder Word.

5 REMUW Remainder Unsigned Word.

36

4.2 Appendix 2: Examples for Run

4.2.1 Example 1: Add and Store.

Date: 2023/7/23

Hash: a7b05c264b7f45e27a81ddc02184c6dcee29fdf9

Description: Given two numbers, add them and store into memory.

C code

#include "stdio.h"

int main() {

 int a = 14;

 int b = 15;

 int c;

 c = a + b;

 return 0;

}

Assembly code

addi x2 x0 14; //0// 00000000111000000000000100010011

addi x3 x0 15; //1// 00000000111100000000000110010011

add x1 x2 x3; //2// 00000000001100010000000010110011

sd x1 8(x2); //3// 00000000000100010011010000100011

4.2.2 Example 2: Sum Less Than.

Date: 2023/7/29

Hash: 1d28ab2a485737b8bd90fa777fd550d5183b705c

Description: Given a non-zero natural number N, calculate the sum of natural numbers less

than N.

C code

#include "stdio.h"

int main() {

 int N = 10;

 int sum = 0;

 for(int i=1; i<N; i++){

 sum = sum+i;

37

 }

 return 0;

}

Assembly code

addi x1 x0 10; //0// 00000000101000000000000010010011

addi x2 x0 1; //4// 00000000000100000000000100010011

addi x3 x0 0; //8// 00000000000000000000000110010011

add x3 x2 x3; //12// 00000000001100010000000110110011

addi x2 x2 1; //16// 00000000000100010000000100010011

blt x2 x1 A12; //20// 11111110000100010100110011100011

sd x3 8(x1); //24// 00000000001100001011010000100011

	1 Preface
	2 Hardware Design
	2.1 Basic Single Cycle Implementation
	2.1.1 Deisng Diagram
	2.1.2 The Building of Data Path
	2.1.3 The Building of Control Path
	2.1.4 How the Processor Works?

	2.2 Basic Pilelined Implementation
	2.2.1 Design Diagram
	2.2.2 Data Hazard: Forwarding or Bypass
	2.2.3 Control Hazard: Branch Prediction
	2.2.4 Architecture Hazard: Stall

	2.3 Support for RV32I and RV64I
	2.3.1 Design Diagram
	2.3.2 Modification Overview
	2.3.3 ALU control unit
	2.3.4 Branch and Jump
	2.3.5 Strobe Unit

	2.4 Support for RV32M and RV64M
	2.4.1 Booth-Wallace Multiplier
	Signed Multiplication
	Radix-2 Booth Algorithm
	Radix-4 Booth Algorithm
	Wallace Tree
	Full Adder

	2.4.2 SRT Divider
	Overview
	Restoring Division
	Non-restoring Division
	Radix-2 SRT Division
	Radix-4 SRT Division
	On-the-fly Conversion

	3 Functional Description
	3.1 Files and Directory Structure
	3.2 RV32I Module Design
	3.3 RV32M Module Design

	4 Appendices
	4.1 Appendix 1: Support of Instruction Set
	4.2 Appendix 2: Examples for Run
	4.2.1 Example 1: Add and Store.
	4.2.2 Example 2: Sum Less Than.

