LHIPS
ALLIANLE

RISC-V VeeR EH1
Programmer's Reference Manual

Revision 1.9

December 22, 2022

Copyright © 2022 CHIPS Alliance
Licensed under Apache-2.0

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

SPDX-License-ldentifier: Apache-2.0
Copyright © 2022 CHIPS Alliance.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

limitations under the License.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 ii

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Document Revision History

Revision | Date Contents
1.0 Jan 24, 2019 Initial revision
1.1 May 31, 2019 | « Updated ‘Reference Documents’ table:

* Updated link and version number of RISC-V ISA spec

» Updated link and version number of RISC-V Privileged spec, updated section
references throughout text

» Added link and version number of last RISC-V Privileged spec with PLIC chapter
* Fixed URL and updated version number of RISC-V Debug spec

» Added core pipeline summary (Section 1.3.1)

* Corrected load-to-load ordering description (Section 2.5.1)

» Added section on ‘Bus Barrier’ mechanism (Section 2.5.3.3) and updated
instructions and data fencing sections accordingly (Sections 2.5.3.1 and 2.5.3.2)

» Added section on ‘Memory Protection’ mechanism (Section 2.6)
» Updated note when mrac access control bits are ignored (Section 2.8.1)

* Clarified note how writing illegal value to mrac register is handled by hardware
(Section 2.8.1)

» Added region number to field names of mrac register to make them unique (Table
2-6)

» Changed field name fence.i in dmst register to fence_i to avoid potential
compatibility issues with tools (Table 2-7)

» Added section on ‘Speculative Bus Accesses’ (Section 2.12)

» Updated DMA QoS description (Section 2.13.3)

» Added note that applied reset vector must be to valid and enabled memory address
(Section 2.14)

* Updated NMI description and added table of mcause values (Section 2.15)
* Clarified comment about stuck-at bits (Section 3.4)

+ Corrected note regarding correctable error local interrupt not being latched
(Sections 3.5.1, 3.5.2, and 3.5.3)

» Updated Power Management chapter (Chapter 5):
» Changed title to ‘Power Management and Multi-Core Debug Control’

» Added brief descriptions of power management unit (PMU) and multi-processor
debug control (MPC) interfaces (Section 5.2)

* Clarified that only highest-priority external interrupt wakes up core (Figure 5-1)
» Updated note describing ‘Core Quiesced’ (Section 5.3)

» Added notes how to tie off input signals if PMU interface not used (Table 5-3)
» Added notes how to tie off input signals if MPC interface not used (Table 5-4)

» Updated cross-reference to mhwakeup signal description to be more precise
(Section 5.4.7)

* Clarified vectored external interrupt handler selection steps (Section 6.6)
» Added source ID to field names of meipX register to make them unique (Table 6-3)

» Clarified that event counting of division instructions includes remainder instructions
(Table 7-2)

* Fixed note on tag alignment (Table 8-2)
» Updated mfdc register definition (Table 10-1):
» Updated field descriptions

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 iii

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Revision

Date

Contents

» Assigned names to fields

* Added ‘DMA QoS control’ field

» Added ‘side effect posted disable’ bit

* Removed ‘PIC multiple interrupts disable’ bit (was bit 9)

* Removed ‘Load miss bypass Write Buffer (WB) disable’ bit (was bit 1)
» Updated mcgc register definition (Table 10-2):

* Updated field descriptions

» Assigned names to fields
 Improved clarity of mcause value table (Table 11-3)
» Updated asynchronous signals (Table 14-1):

* Removed core output signals

» Added that JTAG signals are synchronous to TCK

» Added asynchronous MPC interface signals
» Updated port list (Table 15-1):

* Removed ‘(async)’ label from core output signals

» Added missing DMA Slave AHB-Lite bus signals

» Added MPC interface signals

» Updated performance counter activity signals

» Added that JTAG signals are synchronous to TCK

» Added jtag_id port
» Added ‘Memory Protection Build Arguments’ (Section 16.1)
» Updated ‘Errata’ chapter (Chapter 18):

» Added ‘Back-to-back Write Transactions Not Supported on AHB-Lite Bus’ section

* Removed ‘Core May Handle Write Transactions with Different Transaction IDs
Incorrectly on AXI System Bus’ section, issue has been fixed

1.2

Aug 13, 2019

» Updated bus barrier description (Section 2.5.3.3)

» Updated ICCM/DCCM error detection and handling details (Table 2-4 and Table
2-5)

» Added clarification that ordering between core and DMA accesses is not
guaranteed (Section 2.13.5)

» Updated ICCM/DCCM recovery/logging details (Table 3-2)

« Clarified that correctable errors on DMA reads to ICCM/DCCM are counted
(Sections 3.5.2 and 3.5.3)

* Clarified that correctable DCCM errors counted only for retired load/store
instructions (Section 3.5.3)

» Changed ‘RV_’ prefix to “RV_’ (Table 14-1)
» Updated port list (Table 15-1):

* Changed ‘RV_’ prefix to “RV_’

» Added ‘core_rst_I’ signal

* Removed ‘mbist_mode’ signal

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 iv

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Revision | Date Contents
15 Feb 14, 2020 | « Added footnote that PIC access errors also included (Table 2-2)
* Clarified that correctable error local interrupt is level signaled (Sections 3.5.1, 3.5.2,
and 3.5.3)
* Fixed scope of Debug Mode in Core Activity States diagram (Figure 5-1)
» Added several clarifications on MPC interface restrictions:
* Halt/run request typically allowed only when not in requested state already
(Section 5.3)
* Signaling same request multiple times not allowed (Table 5-4)
» Conditions when requests are acknowledged (Section 5.4.2.2)
« After reset to Debug Mode, run request only allowed after core is in Debug Mode
(Section 5.4.2.2)
» Added Single Stepping section (Section 5.4.1.1)
» Amended note regarding signaling PMU halt/run request when already in that state
(Section 5.4.2.1)
» Added note that interrupts must be disabled while changing some interrupt registers
(Section 6.5)
» Updated mimpid register value to ‘2’ (Table 12-1)
» Added standard CSR address map (Table 12-2)
» Updated port list (Table 15-1):
* Added dbg_rst_1 signal
* Removed core_rst_1 signal (signal on core periphery, but not core complex
periphery)
* Removed sb_axi_arsize bus description comment indicating ‘hardwired’
» Added mbist_mode signal (signal on core complex periphery, but not core
periphery)
» Added ‘Compliance Test Suite Failures’ chapter (Chapter 17)
» Added erratum for debug access register abstract command issue (Section 16.2)
151 Feb 28, 2020 | « Added note that uninitialized DCCM may cause loads to get incorrect data (Section

3.4)
» Added Debug Module reset description (Section 14.3.2)
» Added footnote clarifying trace port signals (Table 15-1)

» Added erratum for access register abstract command size check issue (Section
16.3)

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 v

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Revision

Date

Contents

1.6

May 15, 2020

» Added footnote that misaligned accesses to side-effect regions trigger a misaligned
exception instead of the recommended access fault exception (Table 2-3)

Fixed note how writing illegal value to mrac register is handled by hardware
(Section 2.8.1)

» Added Internal Timers chapter and references throughout document (Chapter 4)

» Added cross-references to debug CSR descriptions (Table 5-2, Table 5-4, Table
12-2, and Sections 7.4 and 14.3.4)

» Added Debug Support chapter (Chapter 9)
* Incremented mimpid register value from ‘2’ to ‘3’ (Table 12-1)
» Updated ‘Errata’ chapter (Chapter 18):

» Removed erratum for debug access register abstract command issue (fixed) (was
Section 16.2)

* Removed erratum for access register abstract command size check issue (fixed)
(was Section 16.3)

» Added erratum for debug write to minstret register issue (Section 18.2)

» Added erratum for abstract command register read capability (Section 18.3)

1.7

Jun 25, 2020

» Updated versions of RISC-V Base ISA [1] and Privileged [2] documents (Reference
Documents)

» Added description of SoC access expectation (Section 2.11)

» Added note that mitcnt@/1 register is cleared if internal timer interrupt coincides
with write to it (Section 4.4.1)

* Amended debug_mode_status signal description (Table 5-4)
* Clarified effect of sespd bit of mfdc register (Table 10-1)
» Debug Support chapter updates (Chapter 9):
* Fixed ‘Access’ of JTAG BYPASS register since not directly accessible (Table 9-5)
* Fixed abstract command register definition (Table 9-11):
» Changed ‘W’ accesses to ‘RO/W’
* Fixed aarsize and aamsize field descriptions that command error is ‘2’

» Updated aarpostincrement, postexec, transfer, and aampostincrement bit
descriptions including error behavior

» Added note to aamvirtual bit description that no error is flagged
* Fixed reset value of sbaccess field (Table 9-14)

» Updated description of shbautoincrement field that only incrementing for successful
accesses (Table 9-14)

» Added note that no bus transaction is issued on debug execute address trigger
for side-effect load (Table 9-20)

» Added footnote that bit O is ignored for instruction address matches (Table 9-20
and Table 9-21)

* Incremented mimpid register value from ‘3’ to ‘4’ (Table 12-1)

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 Vi

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Revision

Date

Contents

1.8

Sep 18, 2020

» Added note that NMis are fatal (Section 2.15)

* Clarified note that debug single-step action is delayed while MPC debug halted
(Section 5.3)

» Added note that debug single-stepping stays pending while MPC debug halted
(Section 5.4.1.1)

» Added note that mpc_debug_run_req is required to exit Debug Mode if entered
after reset usingmpc_reset_run_req (Section 5.4.2.2)

» Added haltie control bit to mpmc register (Section 5.5.1)

» Added note that edge-triggered interrupt lines must be tied off to inactive state
(Section 6.3.2)

* Removed outdated ‘Full Hardware Implementation of Vectored External Interrupts’
section (was Section 6.6.1)

* Fixed gateway initialization macro example (Section 6.14.2)

» Added note that mt ime and mtimecmp registers must be provided by SoC (Section
7.2.1)

» Added note that index field does not have WARL behavior (Table 8-1)

» Added notes that abstract commands may only be executed when core is in debug
halt state (Sections 9.1.2 and 9.1.2.5)

» Added notes that system bus accesses are allowed irrespective of core’s state
(Sections 9.1.2 and 9.1.2.8)

» Added description of abstract command enhancements:

» Updated notes that SoC memory locations are accessible using access memory
abstract command as well (Sections 9.1.2 and 9.1.2.5)

» Updated cmderr field description (Table 9-10)
» Updated abstract command description (Table 9-11):
* Clarified that selecting unsupported abstract command causes failure
» Updated aarsize and aamsize field descriptions
» Updated aarpostincrement and aampostincrement bit descriptions
» Updated regno field description
* Added abstractauto register (Section 9.1.2.6)

» Added note that selecting unmapped access memory abstract command address
causes failure (Section 9.1.2.7)

» Added footnote to aamvirtual bit documenting why no command error is reported
(Table 9-11)

» Added description of shaddresso register write access action and error condition
behavior (Section 9.1.2.9)

* Corrected description of sbdatao register read and write access action (Section
9.1.2.10)

* Clarified that triggering on load data or executed instruction opcode not supported
(Section 9.1.3.3 and Table 9-20)

* Clarified that triggers do not fire if action is ‘0’ and interrupts disabled (Table 9-20)
» Updated tdataz2 register description (Table 9-21)

* Incremented mimpid register value from ‘4’ to ‘5’ (Table 12-1)

* Updated ‘Reset to Debug-Mode’ description (Section 14.3.4)

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 Vi

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Revision | Date Contents

1.9 Feb 2, 2022 » Updated link to RISC-V Debug [3] specification (Reference Documents)

» Added non-blocking side-effect loads to unmapped address and uncorrectable error
tables (Table 2-2 and Table 2-4)

» Added note to mdseac register description clarifying captured address (Section
2.8.3)

* Clarified DMA write access size and alignment (Section 2.13.2)
» Added non-blocking DMA control section (Section 2.13.4)

* Clarified that correctable error counter/threshold registers are always instantiated
(Sections 3.5.1, 3.5.2, and 3.5.3)

» Added note that spurious interrupts may be captured for disabled external interrupts
(Section 6.3.2)

» Updated mcontrol register (Table 9-20):
+ Clarified hit bit description
» Updated sizelo field description and clarified that only ‘0’ is implemented

» Updated chain bit description with how hardware handles register writes with
inter-trigger dependencies

» Changed chain bit for triggers 1 and 3 to read-only
» Updated mfdc register (Table 10-1):

» Added blocking loads/DMA control (bldmad) bit

» Changed dnbd bit to control DIV only, but not loads

+ Added note regarding physical design considerations forrst_1 signal (Section
14.3.1)

* Incremented mimpid register value from ‘5’ to ‘6’ (Table 12-1)

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 viii

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Table of Contents

1

2

VEER EHIL COIE OVEIVIEW ...cc.iveiieiitiiieeitie ettt ettt et e e e et e e e et e e e 4 he e e e e s e e e s et e e nane e e e br e e s anne e e e nnnneeeenreeennns 1
O O S LU =T PO TUTTTPPPRUPRRPT 1
I O] (= ©fo]]][G OO PP P T TOPTPPRTPRN 1
1.3 FUNCHONAI BIOCKSeiiiiiiiiieii ettt bbb e bttt e bt b e sab s b e s e e s e 2

T T O o (PP PO 2

1T gL Y2 1Y = T « USSP TSP TP TPTPTRT 3
2 R o [0 [T S o {=T o o] o F P T PO U PP PUPPRUPPPPPRPN 3
2.2 ACCESS PIOPEITIES ...oiiiieeieiiieie ettt ettt e ekt e s s bt e e sa st e s ekt e oo s et e as e e e e b b et e e s et e e aane e e e anEbe e e e nne e e e nn e e e s nneeeeanee 3
2.3 MEIMOIY TYPES ..ottt e et e e e e e e e ekt e e e e e e s et et e e e e e e s e s et e e e e e e e n e Ran e e e e e e e e s nn e e e e e e e e e e eeeeeeennnnes 3

2.3.1 €0 LOCAI ...ttt ettt nb e et e e 3

2.3.2 ACCESSEA Via SYSIEIM BUSuiiiiieiiiiieiiiie ettt ettt ettt e e et e e e s at et e e sateee e anbeeeeentaeeesnnteeeennneeenn 3

PG TR T /= o] o g To I R L= 1S] 14 o1 o] PSSP PPR 4
2.4 Memory TYPE ACCESS PrOPEITIESooiiiiiiiiiiiiiie ettt ettt e e e ettt e e e e et eeee e e e s s ntbeeeeaaeasaanbaeeeaaaeeanneeeeas 4
2.5 MEMOIY ACCESS OFUEIING ..eieetiiitiaeeaiittt e e e e e ettt et e e e e et e et eeaeaaaaaebeeeeeaeasaamtae et aaaeaannnseeeeeaeseannntaeeeaaeseannnnneeaaans 4

251 Load-to-Load and Store-to-Store OFAEIINGcoiuriiiriirieriieie ettt e e e e s ann e snees 4

252 (o T=To /Sy (o] (=R @ o [=T o] o o [OOSR PPRT PP 4

253 =T o] o PRSP UPPRPN 5

2.5.4 IMPreciSe DALA BUS EITOIScciiiuieiieeieitiesiieieeieeiesteesteestestesseesteesteetesseesseesteanseasbesseesseesseessessaesseesseessens 5
b2 T /(=100 To VA d (0] (= Tod 1 1o o [P TPTTRTTI 6
P A = (ot= oY i o]l F= 1o o |1 T o SRR POUPUPRRNE 6

271 Imprecise Bus Error Non-Maskable Interrupt

2.7.2 Correctable Error LOCAI INTEITUPLu ittt e e e et e e e e e e be e e e e e e e e anneereeeas

2.7.3 Rules for Core-LoCal MEMOIY ACCESSEScoouutiiiiieiiaiiiiitee e e e ettt e e e e e ettt e e s e e sabbbeeeaaeaaaaabbbeeeeaeeaaantbeeeas 7

2.7.4 UNMAPPEA AGUIESSES ..cooiuiiiieiiieee ittt ettt ettt et e ettt s et e e s b bt e e e be et e sb b e e e ek b e e e es et e nasbe e e e ssb e e e e anne e s naneeas 8

275 MISAIIGNE ACCESSESciiiitiieie e ettt e ettt e e e e ettt ee e e e sttt a et eeeeas s st baeeaeeeessasbaeaeaeeeeasstbasseeeeesssstbanaeaeas 9

2.7.6 UNCOITECTADIE ECC EITOISiiiiiiiiie ittt ettt e e et e e bt e e e bt e e s nnee e e sbneeeantbeeeeae 10

2.7.7 Correctable ECC/PAILY EITOISocuiiiiiiiie ittt et re e nb et e s nree s 11
P S B OFe 011 (0] /AS] r= 1L S R {=T 5] (=] £SO PPPPP PRSPPI 12

28.1 Region Access Control REGISTEr (MFAC) ...eiieeiiiieie ettt e e e ettt e e e e e e s nbe e e e e e e e annnneeeas 12

2.8.2 Memory Synchronization Trigger Register (AMSL)..........ooi i 13

2.8.3 D-Bus First Error Address Capture RegiSter (MASEAC)ocuuuveiiiiiiiiiiiiiee et 13

2.8.4 D-Bus Error Address Unlock Register (MAEAU)uuiiiiieiiiiiiiiiee ettt s st e e e e e s ar e e e e s aaare e e e 14
2.9 MEMOIY AQAIESS MAP .oiiiiiiiiiee ettt e et e e e e ettt e e e e e et tbb et eaeeea s bt baetaeeeeassssaeaeaeesansssbaeaeeessansstbaeeeaeananes 14
2.10 PAITIAI WITLES ...ttt ettt bttt bt e bt e bt e e et e bt e st st e see e e nbn e e sbe e e nbe e e sbeeeaneeen 15
211 Expected SOC BEhAVIOr FOr ACCESSESciiuiiiiiiiiiiiiiiee ettt ettt e e e b 15

2.12 Speculative Bus Accesses

2.12.1 Instructions

2.12.2 D7 1 r= R PO UUPPPRR PSP

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 iX

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

2.13 DIMA SIBVE POIT ...ttt ettt e R e e e et e e s e e s e R e e e e n e e e e n e e e e nn e e nn e e 16
2.131 AACCESS ..o e e s e e e e e s e e e s s as 16
2.13.2 WIite AIGNMENT RUIES .. .ottt ettt e e et e e nab e e nn e e e e nneeenenee 16
2.13.3 QUAIILY OF SEBIVICE ..uviiiiiii ettt ettt e e e e et eeee e e s st bbb e e e ee e s s sbaeseeeeessssbanseaeeesannes 16
2.13.4 NON-BIOCKING DIMA CONLIOI ...ttt e e e e e e e e e e e e e e e e st aeeeeeeensastbaaeaeeas 16
2.135 Ordering Of Core and DIMA ACCESSEScoiuuuiiiiieei ittt e ettt e e e e e s b et e e e e e e ee e e e e e e anbbe e e e e e e e e anebeaeas 16

2.14 Y e B fo | Fo V-V o I =T oi (o) PSSP 16

2.15 Non-Maskable Interrupt (NMI) Signal and VECIOLooeiiiiiiiiiiii et 17

R I /[T o g Lo VAl = ¢ (o g = (o (=T ox 1T o PRSP UPUPPRPIN 18

I A €T 1= = U B TS o o oo E OO PP P PO P PP PPPPPPTP 18
311 [11V P O UPPPPR PP PUPPRPPTI 18
3.1.2 Error COrreCting COOE (ECC)eiiiiiiiiiieiiiee ettt e ettt e e e e e et e e e e e e s nsteeeeaeeaeannsbeeeeaeeaaannnbeeeaaeaanannnes 18

3.2 Selecting the Proper Error Prote€Ction LEVELcoooi ittt e e ea e 19

TR T Y (=10 o] YA = =T = T (o] Y OO PPPPPPPPPURPN:

3.4 Error Detection and Handling

3.5 Core Error Counter/ThreShold REGISIEISuviiiiiiiiiiie et e e et aeaea e 22
351 I-Cache Error Counter/Threshold RegiSter (MICECL)........cciiiiiiiiiiie it 23
3.5.2 ICCM Correctable Error Counter/Threshold Register (MiCCMECE)cceeviriiiiiiiiiieiiiiee e 23
3.5.3 DCCM Correctable Error Counter/Threshold Register (MACCMECE)coccuvveiiiiieiiiiie e 24

N 101 (= ¢ =V I =T £ PP PTPRPPTR 25

A1 FRAIUIES ...ttt oo oo e e oo oo e e oo e e e ee nn e e e e e e e e annnes 25

o 1< Tox 10 1T] o H TP UPTP T SPOTPPPPRT 25

4.3 Internal TIMer LOCAl INTEITUPLS ...ooiiiiiiiiieie ettt e et e e e e e et bbb e e e e e e e s aae bbb e e e e e essnbbeeeeaaeeanas 25

4.4 CONrOl/STAtUS REGISIEISuiiiiiiiiiiiiiii ettt e e e et e e e e e st e e e e e st atb et e eeeeeassesbeetaeesaasssbaeeeeessnsssraeeeeeeaanses 25
441 Internal Timer Counter 0/ 1 Register (MItCNTO/L)oeeiiiiiiiiiiieiieee e 26
442 Internal Timer Bound O/ 1 Register (MIthO/L)cooouiiiiiiiieie e 26
4.4.3 Internal Timer Control 0/ 1 Register (MItCHIO/L)ooiiiiiiiiiie et 26

5 Power Management and Multi-Core Debug CONIOLcooiiiiiiiiiie ettt e e e e e e e aneaeeea e s 28

5.1 FRAIUIES ...t r e oot e e e e e e et r e e e e e e e r e e e e 28

5.2 Core Control Interfaces

5.2.1 Power Management

5.2.2 MUlti-Core DEDUQG CONLIOLuviiiiieiiite ittt e e e e e st e it e e e e e s st b e e e e eeeesssbaaeeeeeessansreses 28
5.3 POWEE SEALES ...ttt e ettt e e et e e e e e et e e e e e e et e e e e e e et e e e ae 28
5.4 POWET CONIIO ..eiiiiiiiiieitiie ettt et e et e e s et e s s ne et e et e e e s b e e e e e e nn et e s ane e e e sane e e e nennee e s 31

54.1 DEDUG MOTE ...ttt e et e bt e s h e e e h e h e et e e 32

5.4.2 Core Power and Multi-Core Debug Control and Status Signalscccccoeeiiiiiiiie i 32

5.4.3 (D =T o U To ST ot=] o o o 1 PO EPPT PRI 38

5.4.4 COre WaKE-UP EVENLSooiiiiiiiiiiii ettt ettt e e ettt e e e s e e kbt e e e e e e e e abb e e e e e e e aabnnbeeeeeeeaanns 39

545 Core Firmware-INitiated HAaltcooiiiiiiii e 39

54.6 DMA Operations WhiIle HAIEMoiiiiiiiieeee ettt e 39

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 X

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

5.4.7 External Interrupts WHhile HALedeeeiiiii e e e et e e e e e 39
5.5 CONIOI/STAtUS REGISTEISeeiiiiiiiiitiiiie ettt ettt e e e r ettt et e e e s et ab et e e e e e ek abeeeeae e e s ab bt beeeaeeaaanbbeaeeaeeeeannsneeas 40
551 Power Management Control REGISTEr (IMPIMIC) ...vvviiiiiiiiiiiiee ittt ettt 40
5.5.2 Core Pause Control REGISIEr (IMCPC) ..vieiiiiiuiiiiiieeeiiiiieet e e e e ettt e e e e e s eba e e e e e s st e e aeaesessatbbareaeeessnntraeeeeens 40
(I o (=Yg aF= U 1 (=T U o] £ USRS POTUPPRPRN 42
B.1 FRAIUINES ... e e r e e e s r e e e s 42
(o272 =Yoo g To [@o] 1Y =T o1 o RS 42
6.2.1 Unit, Signal, and RegISTEr NAMINGcccvviiiiiiiee it e et e e e s et e e nnreeensnreee s 42
6.2.2 AdAresS MaP NAITHNGeeeiiiiiiiiiiii et e e ettt et e e e e s e ettt e eeaeaa s aeaeeeeaaeaansaseeeeaaasaannnsseeeaeesaannnnseaaaesan 42
6.3 Overview of Major FUNCHONAI UNILSiiiiiiiiiiiiee ettt e st s 42
6.3.1 EXIErNAI INTEITUPE SOUICEeiiiieeeee ittt ettt et e e et e e bt e e skt e e bbbt e s b et e e s ne e e e e nnreeeaaes 42
6.3.2 1= 1= PO P PP P PP PPPPPPPPPP 42
6.3.3 [(O3 O] £ PP P PP TPOPPOPPPPPPPPPPPIRE 43
6.3.4 INEEITUPTE TAIGEL ... e 43
(S = (O =] o Tt DI T= 1o = 13 TSRO PRTRR 43
(SR I 1 =Yoo Ao @ =T =4 o o [O EPSPRRR P 46
6.5.1 INIHANZALION ..o.viiiiie e 46
6.5.2 R0] = TR @] o [T = Lo H PRSP SPP PP SPPPPOPTPPN 46
6.6 Support for Vectored EXIErnal INTEITUPLS.c.uiii ittt 47
(SR A 1 (=14 U o1 Q@ o F=Y1 1 oo [P PEPT 48
(o2 T 01 (=14 U o1 NN =2 T PP 49
6.9 PErfOrMANCE TAIGELS ..oooiiiiiiiiiiiie ettt e e e ettt e e e e e aa b bbe et e e e e e aaaba b e e ee e e e e abee e eeeeeeannbaeeeeeeeeanbnaeeaaaeaan 50
6.10 [07e] a1To 8 =1 o111 1Y PP UTUP S TPPPPRPN 50
6.10.1 RUIES . ettt h e bt e b e e b e e s b e e bt e b e e s b b e s e e e 50
6.10.2 BUIIA AFGUIMENTS ...ttt ettt et e s a et e e st e e s bt e e et et e et e e e nbeeesnnneeas 50
6.10.3 IMPACT ON GENEIAEA COUE ...ttt ettt ettt bt e e st e e e aabb e e e nareeesnaneeas 50
6.11 PIC CONrOl/STAtUS REGISTEISeiiiiiiieiiiiie sttt ettt e st e et e et e e e anbe e e e snnree e s nneeeas 50
6.11.1 PIC Configuration Register (MPICCTQ)uuueuiiiieeiiee e ee s 51
6.11.2 External Interrupt Priority Level RegiSters (MeIPIS)coviii it 51
6.11.3 External Interrupt Pending Registers (meipX)
6.11.4 External Interrupt Enable RegiSters (IMEIES)ooiiiiiiii it
6.11.5 External Interrupt Priority Threshold Register (MEIPL)eevveiiiiiiiiiei e e e 52
6.11.6 External Interrupt Vector Table RegiSter (MEIVL)coiiiiieiiiiieiiiie e 53
6.11.7 External Interrupt Handler Address Pointer Register (Meihap) ..o 53
6.11.8 External Interrupt Claim ID / Priority Level Capture Trigger Register (MeicpCt)cccocvvvrvveeriiinrenns 54
6.11.9 External Interrupt Claim ID’s Priority Level Register (Meicidpl)ooeeiiiiiiiiiiee e 54
6.11.10 External Interrupt Current Priority Level Register (MeiCUrpl)oeeiiiiiiiiiiie e 55
6.11.11 External Interrupt Gateway Configuration Registers (MeigwCtrlS)coiiiiiiiiiiiniiiiiieee e, 55
6.11.12 External Interrupt Gateway Clear Registers (MEIGWCIFS)cooiuiiiiiiiiiiniiiie et 56
6.12 PIC CSR AGUIESS IMAP ...ttt ettt ettt e ekt e e st e e sk ke e e e b et e e sane e e e s sbn e e e e tnn e e e nneeeennneeen 56

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 Xi

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

6.13 PIC Memory-mapped RegiSter AAAreSS MaP ...c.cooiiuiiiiiiieei it ee et a e e e e e e e e e e e eeeneeeeeaeaas 56
6.14 Interrupt Enable/Disable Code SAMIPIES ...t e e e e e e e ee e e e e aaees 57
6.14.1 EXAMPIE INEITUDPT FIOWS ...ttt et e st e e e e e nnn e e e 57
6.14.2 EXaMPIE INTEITUPE IMACTOSvviiiiiie e ettt ettt e e et e e e e e ettt e e e e e s et bb et e e e e e e s aatbaaeeaaeeassntbeaeeaeeeanes 58

A == g (o1 g F=a (o= o a1 (o] [o [P PUEOOUPURPRP 60
B0 R == (0 = PP 60
A ©Fo 011 (0] AS] r= LT S R T=T 5] (=] £ PP PRP PRSPPI 60
7.2.1 Standard RISC-V REQISIEISoeiiiiiieiiiiiieitiit ettt et s et e st e s e bt e e s e e e e ns e e e anreeennnes 60
7.2.2 Platform-specific CoNtrol/Status REGISLEISccoiii it e e et e e e e e e anneeeeeas 60
G T 0 10 o1 (=T =SSOSO RTP PP 61
7.4 Count-IMPACHNG CONAITIONScciutiiieiiiii ettt ettt e e b e e e et bt e e be e e e rhn e e e e e sbe e e s aabe e e e sanbeeeanbreeenns 61
AT =AY =T £ O SPRPRETPRR 61

8 Cache Control
8.1 [RL=T= 100 [(=Y PP

8.2 Feature Descriptions
8.2.1 Cache Flushing

8.2.2 ENabling/DiSabling 1=CaChEcoiiiiiiiiiie e e e e e e et a e e e e e st raeaeaeaanes 64
8.2.3 DIBONOSHC ACCESS ...ttt ittt ettt ettt et e et e e eab et e e sh kbt e e ekttt e eab et e s sh b et e e asbb e e e beeeennneeeas 64
S TR I U - O 1T OO RTP TR 64
o I I =Yoo Yol @ o T=] =4 o] o [P SPRRR 65
8.4.1 Read a Chunk of an [-cache Cache LINEcceuviiiiiiiiiii et 65
8.4.2 Write a Chunk of an I-cache Cache LiNeoooeviiiiiiiiii e e 65
8.4.3 Read or Write a Full I-cache Cache LiNEcccciiiiiiiiiiiiiiiie e 65
8.4.4 Read a Tag and Status Information of an I-cache Cache Linecccccovciiiiiiiiii e 65
8.4.5 Write a Tag and Status Information of an I-cache Cache Linecccccveiiiiiiiiiiie e 65
8.5 |-Cache CoNtrol/StatUS REGISTEIScciiiieiiiiie ittt bt e et e e sbr e e et e e e e bne e e sne e 66
8.5.1 I-Cache Array/Way/Index Selection RegiSter (AICAWICS)ccvriiiriiiiiriiie et 66
8.5.2 I-Cache Array Data 0 Register (ICAA0)oui ittt e e e e e e e e e e ennneeeaaeaeas 67
8.5.3 I-Cache Array Data 1 RegiSter (QICAAL)oouiiiiiiiiiieee ettt e e e e et e e e e e as 68
8.5.4 |-Cache Array GO ReQISIEr (AICAGO0). ... uutteeieiiiiiiitiee ettt e e e et e e e s e e bbb et e e e e sasnenbe e e e e e anannenes 69

(I /= 1o g o o I =Y o 10 o RS 10 o] o] o PR 70
9.1 CONMIOI/SIAIUS REQISTEIS .uviiiiiiiiiiiiiiie e e ee ittt e e e e et e e e e s e e et e e e e s st e et e e e e st sbeseeaeeasansbesaeeaeessntbaaeeeeeessnnsaeees 70
9.1.1 Control/Status Registers in JTAG AJAreSS SPACEccciiiiiiiiiiieiiiiee ettt srae e s 70
9.1.2 Control/Status Registers in Debug Module Interface Address SPaCecceeeiriiiiiiieiiiniiiiee e 72
9.1.3 Control/Status Registers in RISC-V CSR AJAreSS SPACEc.ueveiiiriiiriiiiieiiiie et 82
10 LOW-LEVEI COIE CONIOI ...ttt ettt ettt ettt bttt e e st b e e et et e et et e et eean e nenes 88
10.1 CONLIOI/STALUS REGISLEIS ...ttt e ettt e e e e e st e et e e e e e e st beeeeaeaeeaanbbeeeeaeeasabbbneeaeeeenannns 88
10.1.1 Feature Disable Control RegiSter (MFOC)ouoi i 88
10.1.2 Clock Gating Control REGISIEr (MCUC) «.eeivvreeiiiiee it iiiee et e ettt e ritee e stbre e st e e e sebee e e snbbeesabeeaesneeas 89
11 Standard RISC-V CSRs with Core-Specific Adaptationscooviieiiiiiiie e 91

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 Xii

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

11.1.1 Machine Interrupt Enable (mie) and Machine Interrupt Pending (mip) Registersccccccceveeeiiinnenn. 91
11.1.2 Machine Cause REJISIEN (IMCAUSE)cieiiiiiiiiiiieeae ettt e e e e e et ee et e e e e s bbbt e e e e e aaaaatbaeeeeaeasanbaeeeeaeeeannnes 92
12 (0251 2 Yo [0 [1= 1Y - T o T PO O OO PP P PP OPPPPPPPPRPN 93
12.1 SEANAAIT RISC-V CSRS ...ttt ettt e e sae e st et e s be e e nbe e e abee s beeeneesans 93
12.2 NON-StaNdArd RISC-V CSRSciiiiiiiiiiiiiit ittt et sttt sne e 94
13 INEEITUPL PHIOTITIES ..eeeeeiii ettt ettt e oo ettt e e e e e e s st bttt e e e e e aaa b e e e e e e e e e sanbbeeeeaeeeeannbseeeeaeeannnnnes 96
L4 CIOCK @NU RESEL ...ttt e et b e etk e s bt e E e se e e b bt e b et e a b bt e s ke e eab e e as e nan e e s e e nan e e e 97
14.1 FRAIUIESottt oo oottt e e e e et e e e e e e e et e e e e e e n e e e e e s e a s e reeee e e e anrnnereeeeennne 97
14.2 (4 [oTe3 (1 o PRSP 97
14.2.1 REGUIAT OPEIALIONeetieeiiii ettt a et e st e e e sttt e e be e e e st et e st e e e nnre e e e nneees 97
14.2.2 System BUS-t0-Core CIOCK RALIOScoiiuiiiiiiiiie ittt et e e sbre e 97
14.2.3 YV Tod o1 (] g T 1 RIS T | g F= | ERPT 99
14.3 RSB . e e e e 100
14.3.1 Core COmMPIEX RESEL (ISE_I) ..eeeiiiiiiiiiii ettt e e e et e e e e e s s nebeeeeeeeeanas 100
14.3.2 Debug Module ReSet (ADG_TStI) cooiueiiiiiiiee et eee e s nneas 101
14.3.3 Debugger Initiating Reset Via JTAG INTEITACEoviiiiiiiiiiiie et a e 101
14.3.4 Core Complex Reset t0 DEBUG MOTEcooiiiiiiiiii et e e eearre e e e 101

15 VeeR EH1 Core COmMPIEX POt LISociiiiiieiiiieiiiie ittt ettt e e e st s b e e snneee s 102

16 VeeR EH1 Core BUild ATQUIMENTSooiiiiiiiiiiie ettt ettt e ettt e e se e e s et e e e nnn e e nnnneee s 111
16.1 Memory Protection BUild ArQUIMENTScii ettt e e ettt e e e e e et e e e e e e e snnreeaeaeeeeannnees 111
16.1.1 Memory Protection Build Argument RUIES it 111
16.1.2 Memory Protection BUild ArQUIMENTSooiiiiiiiiiiee ettt e e e e ee e e e as 111
16.2 Core Memory-Related Build ArQUMENTScooiiiiiiiiiiee et e e e e e e anas 111
16.2.1 Core Memories and Memory-Mapped Register Blocks Alignment RUIEScccccvevieeiiiiiiiieineenieis 111
16.2.2 Memory-Related BUild AFGUMEINESueiiiiiiieiiii ettt e st e e snnee e nnbnee s 111

17 VeeR EH1 Compliance Test SUILE FAIIUIESc.eiiiiiiiiiiiie e 113
17.1 [-MISALIGN_LDST=0L ..eiitiiiiiiiiiiitieiieeeiteeee ettt ettt et ettt ettt e te e ettt et e e e e e e e et aaaaaaaaeaeaaaeaaaaaaaeaeaaaaaaaaaaaaaaaaaaaaaaans 113
17.2 [-MISALIGN_JIMP 0L ..ttt ettt ettt ettt ettt ettt et e e e e et e e et e e e e e e e e e aeaeaeaaaeaaaaaaaaaaaeaaaaaaaaaaaaaaaaans 113
17.3 I-FFENCE.I-01 @Nnd fENCE i coiiiiee e —————— 113
17.4 o] =T= 1 q o o] o | AT TUT TR POPUPPPPPTN 114

18 VEER EHIL EITALA ...eooiviiiiieiie ittt ettt st e et et s e e en e e st e e s e et e e sennee e e nneeenanes 115
18.1 Back-to-back Write Transactions Not Supported on AHB-LIt€ BUScccciiiiiiiiiiiiiiiiiee e 115
18.2 Debug Write to minstret Register Stores Incremented Valuecoooiiiiiiiiiiiie i 115
18.3 Debug Abstract Command Register May Return Non-Zero Value on Readccccoocviieiieiiiniiiieieeeeens 115

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 Xiii

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

List of Figures

Figure 1-1 VEeR EHIL COre COMPIEX ..ouviiiiiiieiireieestiee e ettt ettt et e e et e e st e e s ene e e e et e e e nssne e e e nnneeeeanrneennane 1
Figure 1-2 VEeR EHL C0Ore PIPEIINE ...ttt oottt e e e e e ettt e e e e e e e anbbbeeeaeeaaannnebeeaeaeaannns 2
Figure 3-1 Conceptual Block Diagram — ECC in @ MEMOIY SYSIEIMcoiiiiiiiiiiiiiiiee e e e 19
Figure 5-1 VEeeR EHL COre ACHVILY SEALESiiuiiiiiiiiieeiiieeesiiiee st sie e sttt e e sttt e s bt e e e sab e e e asbt e e s s sbeeeesnbeeeesanneeesnnees 29
Figure 5-2 VeeR EH1 Power and Multi-Core Debug Control and Status Signalsccccveevieeiiiiiiieeiee e, 33
Figure 5-3 VeeR EH1 Power Control and Status Interface Timing Diagramsccccuveeeeeiiiiiiiiiees s e

Figure 5-4 VeeR EH1 Multi-Core Debug Control and Status Interface Timing Diagrams

Figure 5-5 VeeR EH1 Breakpoint Indication Timing DIiagramsS.cocuviiiirieeiiiirienreee e e e 38

FIgUre 6-1 PIC BIOCK DIBGIAM......ceiitieieiiiieeeeiie ettt et e e st e e e st e s s e e e et e e e e asne e e e smn et e et be e e e anneeeennnreeeanreeenns 44
Figure 6-2 Gateway for Asynchronous, Level-triggered INterrupt SOUICESuuviiiiiiiiiiiiiiie e a e 45
Figure 6-3 Conceptual Block Diagram of a Configurable GateWaYccueeeiiiirieiiiie e 45
o U (=l G R O] T 1 = (o | SRR PPPPPRN: 45
Figure 6-5 Vectored EXernal INTEITUPLScoii i ettt e et et e e e e e ettt e e e e e e e e s atbeeeeaesasanneneeeaaeeaannnens 48
Figure 6-6 Concept of INtErrUPt ChaININGeieiiie et e e et e e e e et e e e e e e e natbeee e e e e aasnneeeaaaeaan 49
Figure 14-1 Conceptual Clock, Clock-Enable, and Data Timing Relationshipccocvvviiiiiie i 97

Figure 14-2 1:1 System Bus-to-Core Clock Ratio
Figure 14-3 1:2 System Bus-to-Core Clock Ratio
Figure 14-4 1:3 System Bus-to-Core Clock Ratio
Figure 14-5 1:4 System Bus-to-Core Clock Ratio
Figure 14-6 1:5 System Bus-to-Core Clock Ratio
Figure 14-7 1:6 System Bus-to-Core Clock Ratio
Figure 14-8 1:7 System Bus-to-Core Clock Ratio
Figure 14-9 1:8 System Bus-to-Core Clock Ratio

Figure 14-10 Conceptual Clock and Reset Timing RelationShipoooiiiiiiiiiiiiic e 100

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 Xiv

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

List of Tables

Table 2-1 Access Properties for €aCh MEmOIY TYPEviiiiiiiieiieie ettt e s e 4
Table 2-2 Handling of UNMapped AQUIrESSESeeiiiiiiiiiieeii ettt ettt e e e e ettt e e e e e s neaeeeaaaeaanneteeeaaee e annsaneaens 8
Table 2-3 Handling Of MiSAlIgNEA ACCESSEScoiiiuiiiiiiiiei ittt ettt e ettt e e e e s st e e e e e e st bt e e e e e e aanbabeeeeeeesanneenes 9
Table 2-4 Handling of UNCOrrectable ECC EITOIScouiiiiiiiieiiiiiee ettt esitee ettt et ee e st ee s nbee e s ante e e snbaeeesnnaeeeensbeeenans 10
Table 2-5 Handling of Correctable ECC/PAIILY EITOIScoiieiiiiiiiiiiee ettt s et e e e st e e e e e e e st e e e e e s e e aaarreaaeae s 11
Table 2-6 Region Access Control Register (mrac, at CSR OX7CO0)ccoiiiviiiiiie e et e et e e e e e arareaae e
Table 2-7 Memory Synchronization Trigger Register (dmst, at CSR 0x7C4)

Table 2-8 D-Bus First Error Address Capture Register (mdseac, at CSR OXFCO)ovevirieiiniiieiiiee e 14
Table 2-9 D-Bus Error Address Unlock Register (mdeau, at CSR OXBCO)cccccuriiriiireeeiimiieenniee e 14
Table 2-10 VeeR EH1 Memory Address Map (EXAQMPIE) ...ueuiiieiiiiiiiiie ettt et a e e e e 14
Table 2-11 Summary Of NMI MCAUSE VAIUEScooiiuiiiiiiiiieiiiie ettt et e et e e e sasee e e e beeeeataeeesanneeeenneeeas 17
Table 3-1 Memory Hierarchy Components and Prot@CLIONcooiuiiiiiiiiii ettt ee e 20
Table 3-2 Error Detection, RECOVEIY, aN0 LOGGING --..uueeeiiaiiiiiiiieeaaasaaiiteeeee e e e e atesieeae e e s s nteeeeaeaeaantneseeeaesaaasnsaseeaeasaannes 21
Table 3-3 I-Cache Error Counter/Threshold Register (micect, at CSR OX7FO)cooiuuiiiireiiiiiiiiiee e 23
Table 3-4 ICCM Correctable Error Counter/Threshold Register (miccmect, at CSR OX7FL)ccoooviiiiiiieiniiieeniieeene 24
Table 3-5 DCCM Correctable Error Counter/Threshold Register (mdccmect, at CSR OX7F2)ccveeeviiviiiiieeiineeen, 24
Table 4-1 Internal Timer Counter 0/ 1 Register (mitcnt0/1, at CSR OX7D2 / OX7D5) ..cceeiiiiuiiiiiiieieiieeee e 26
Table 4-2 Internal Timer Bound 0/ 1 Register (mitb0/1, at CSR OX7D3 / OX7DB)cccuveveiiiiireiiiiieniiiee e 26
Table 4-3 Internal Timer Control 0 / 1 Register (mitctl0/1, at CSR OX7D4 / OX7D7) ..eoeevuuieiiiieeeiiieeenniieeesniieeesiieee e 26
Table 5-1 Debug RESUME REGUESTSuuuiiiiiiiiiiiiiit ettt e e e e e s s ettt e e e e e s st b e e e e e e e e s atabaeeeaeessaatabaeeeeessnnsannes 30
TabIE 5-2 COrE ACHVILY STALESeeiiiiiiiiiii i ettt et e e e ettt e e e e e e e et e et ee e e e e aaeeeeeeeeseannetbeeeaaeaaannssaeeaeeeaannnnseeeas 31
Table 5-3 VeeR EH1 Power Control and StatusS SIGNAIScooiuuiiiiiiiiiiiiiei et 33
Table 5-4 VeeR EH1 Multi-Core Debug Control and Status Signalseeiieiiiiiiiiiii e 35
Table 5-5 Power Management Control Register (MpmC, at CSR OX7CB)vvveiiriiiiiiiieiiiiee et 40
Table 5-6 Core Pause Control Register (MCPC, at CSR OX7C2) ..occiiiiiiiiieieiiiiiieiie e ettt e e e e e e e s sibe e e e e e e s nanaes 41
Table 6-1 PIC Configuration Register (mpiccfg, at PIC_base_addr+0Xx3000)oorureieiiiieeniiiienieeee e 51
Table 6-2 External Interrupt Priority Level Register S=1..255 (meiplS, at PIC_base_addr+S*4)ccccccveeiiiirennnne 51
Table 6-3 External Interrupt Pending Register X=0..7 (meipX, at PIC_base_addr+0x1000+X*4)cccccevvrreeeiniuenanns 52
Table 6-4 External Interrupt Enable Register S=1..255 (meieS, at PIC_base_addr+0x2000+S*4)ccccceveurreneennn. 52
Table 6-5 External Interrupt Priority Threshold Register (meipt, at CSR OXBCO)ccouiiiiiiiiiiiiieiiiiiiiiiee e 53
Table 6-6 External Interrupt Vector Table Register (meivt, at CSR OXBCB8)coiiiiiiiiiiiiiiiiieieee e 53
Table 6-7 External Interrupt Handler Address Pointer Register (meihap, at CSR OXFC8)ccccccevveeiiviiiiieeee e, 54
Table 6-8 External Interrupt Claim ID / Priority Level Capture Trigger Register (meicpct, at CSR OXBCA) 54
Table 6-9 External Interrupt Claim ID’s Priority Level Register (meicidpl, at CSR OXBCB)cccccveeeviiiiiiieee e, 54
Table 6-10 External Interrupt Current Priority Level Register (meicurpl, at CSR OXBCC)cccvviiiirieiiiiieiiiieee e, 55
Table 6-11 External Interrupt Gateway Configuration Register S=1..255 (meigwctrlS, at

[(O oo Y Vo (o [) 000 S RSP 55
Table 6-12 External Interrupt Gateway Clear Register S=1..255 (meigwclrS, at PIC_base_addr+0x5000+S*4) 56

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 XV

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Table 6-13 PIC Non-standard RISC-V CSR AdAreSS IMAP .. .uuueiiiiiiaiiiiiiieiie et ea ettt e e e e et eeee e e e s enbaneeeeaeasanees 56
Table 6-14 PIC Memory-mapped RegiSter AQArESS MaAPccoiuuuiiiiiiaiiiietiee ettt et e e e e e e aeeeaae e 56
Table 7-1 Group Performance Monitor Control Register (mgpmc, at CSR OX7DO0)cccuvvviiiiieeiiiiiieniiee e 60
Table 7-2 List Of COUNLADIE EVENTSc.uiiiiiiiiieie ettt et ennee e 61
Table 8-1 I-Cache Array/Way/Index Selection Register (dicawics, at CSR OX7C8)ccceeviiiiriiiieeeeiiiiiriee e 66
Table 8-2 I-Cache Array Data 0 Register (dicadO, at CSR OX7CO)ceiiiiiiiiiiiieaeee i iiiiiiee et e e st e e e 67
Table 8-3 I-Cache Array Data 1 Register (dicadl, at CSR OX7CA) ...uuiiiiuiieeiiiiieiieee e rtieeeestiee et e e seaee e stree e sneeeesnees 68
Table 8-4 |-Cache Array Go Register (dicago, at CSR OX7CB)cuiiiiiieeiiiiieiiiee ettt e e 69
Table 9-1 Registers in JTAG Debug Transport Module AdAreSSs SPACEeeieiiieiiiiiiiiiee e 70
Table 9-2 IDCODE Register (IDCODE, @t JTAG OX0L)ccuuiiiiieeeiiiiiiiiie e e s eeititee e e e e s ettt eeee e e s snibeeeeae e e s snsraeraaaeessensbeees 71
Table 9-3 DTM Control and Status Register (dtmcs, at JTAG OX10) ...ooocveieiiiiiiiriiiiie it 71
Table 9-4 Debug Module Interface Access Register (dmi, at JITAG OXL11) ...ccoiiuiiiiiiiiiiiiiiiiee e eeiee e e e e 72
Table 9-5 BYPASS Register (BYPASS, At JTAG OXLF) .coiiuiiiiiiiiei ittt ettt e ettt e e e e e s saenbee e e e e ennneees 72
Table 9-6 Registers in Debug Module Interface AAAreSS SPACEc..eeeiiiiiiiiiiiiiii e 73
Table 9-7 Debug Module Control Register (dmcontrol, at Debug Module Offset 0X10)cccveeiriiieeeiiiereniiieesiieeens 73
Table 9-8 Debug Module Status Register (dmstatus, at Debug Module Offset OX11)ccecvviiiiieiieeeiiiiiiieiee e 74
Table 9-9 Halt Summary 0 Register (haltsumO, at Debug Module Offset OX40)ccoeiiiiiiiieriie e 75
Table 9-10 Abstract Control and Status Register (abstractcs, at Debug Module Offset OX16)ccoevvveeriiieeennneeenn 76
Table 9-11 Abstract Command Register (command, at Debug Module OffSet OX17)ccccvviiriieeiiiieeiiiiie e 77
Table 9-12 Abstract Command Autoexec Register (abstractauto, at Debug Module Offset 0X18)ccceeeeeeeeiiuinneen. 79
Table 9-13 Abstract Data 0/ 1 Register (data0/1, at Debug Module Offset OX04 / OX05)ccceeiiimeeieeereiiiiieeeae e e 79
Table 9-14 System Bus Access Control and Status Register (sbcs, at Debug Module Offset 0X38)cccveeeeeeennnee 80
Table 9-15 System Bus Address 31:0 Register (sbaddress0, at Debug Module Offset 0X39)ccccceeeeiiiiiiieeeeennns 81
Table 9-16 System Bus Data 31:0 Register (shdata0O, at Debug Module Offset OX3C)cccovvvieiieeiiiiiiiiiriee e, 82
Table 9-17 System Bus Data 63:32 Register (shdatal, at Debug Module Offset 0X3D)ccccvvvveeeiiiiiiiirieee e 82
Table 9-18 Trigger Select Register (tselect, at CSR OX7AD)ociiiiiiiiiiie ettt e et e s e e snnee s 83
Table 9-19 Trigger Data 1 Register (tdatal, at CSR OXTAL)c.vviiiiiiie ettt 83
Table 9-20 Match Control Register (MCONtrol, at CSR OXTAL)eeiiiiieiiiieie et e e e e e e e neaee e e e an 83
Table 9-21 Trigger Data 2 Register (tdata2, at CSR OX7TA2)ciiii ittt e et e e e e e s aer e e e e e e enbeees 85
Table 9-22 Debug Control and Status Register (dcsr, at CSR 0x7B0)

Table 9-23 Debug PC Register (dpC, @t CSR OX7BL)ccciiuiiiiiiiieeaiiieeeeiiee e st ee st e e st e e s nabeee s snbee e e sneeeesaneeeeanseeeennns
Table 10-1 Feature Disable Control Register (mfdc, at CSR OX7F9)cccoiiiiiiiiieie ettt 88
Table 10-2 Clock Gating Control Register (Mcgc, at CSR OXT7F8)cciiuiiiiiiiiieiiiiee e 89
Table 11-1 Machine Interrupt Enable Register (mie, at CSR OX304)cuiiiiiiiiiiieeeee ettt 91
Table 11-2 Machine Interrupt Pending Register (Mip, at CSR OX344)oooiiiiiiiiiiie et 91
Table 11-3 Machine Cause Register (mcause, at CSR OX342)cuveiiieeiiiiiiieie et e e e e s r e e e s e enaaeee s 92
Table 12-1 VeeR EH1 Core-Specific Standard RISC-V Machine Information CSRSccccoviiiiiieiieiiniiiiieee s 93
Table 12-2 VeeR EH1 Standard RISC-V CSR AdAreSS MaPcoueieiiiiiiiiiiiiiee ettt 93
Table 12-3 VeeR EH1 Non-Standard RISC-V CSR AJAreSS MAPccoicviiiiiiiiaiiiieeeiiieesiee e saeeessnniee e 94
Table 13-1 VeeR EH1 Platform-specific and Standard RISC-V Interrupt Prioritiescccvevveiiieeeeniiee e, 96

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 XVi

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Table 14-1 Core Complex ASYNCAIroNOUS SIQNQAISueiiiiiiiiiiiiii et e et e e e e e e aeb e e e e e e e e aneebeeaaaeas 100
Table 15-1 Core COmMPIEX SIGNAIS ...ttt ettt e e e e e ab bt e e e e e e satbee e e e e e e anbbeeeeaeeeannnbeeeas 102

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 Xvii

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

Reference Documents

22/12/2022

Item # | Document Revision Used Comment
1 The RISC-V Instruction Set Manual | 20190608-Base-Ratified Specification ratified
Volume I: User-Level ISA
2 The RISC-V Instruction Set Manual | 20190608-Priv-MSU-Ratified Specification ratified
Volume II: Privileged Architecture
2 The RISC-V Instruction Set Manual | 1.11-draft Last specification version with
(PLIC) | Volume II: Privileged Architecture December 1, 2018 PLIC chapter
3 RISC-V External Debug Support 0.13.2 Specification ratified

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

xviii

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022
Abbreviations
Abbreviation | Description
AHB Advanced High-performance Bus (by ARM®)
AMBA Advanced Microcontroller Bus Architecture (by ARM)
ASIC Application Specific Integrated Circuit
AXI Advanced eXtensible Interface (by ARM)
CCM Closely Coupled Memory (= TCM)
CPU Central Processing Unit
CSR Control and Status Register
DCCM Data Closely Coupled Memory (= DTCM)
DEC DECoder unit (part of core)
DMA Direct Memory Access
DTCM Data Tightly Coupled Memory (= DCCM)
ECC Error Correcting Code
EXU EXecution Unit (part of core)
ICCM Instruction Closely Coupled Memory (= ITCM)
IFU Instruction Fetch Unit
ITCM Instruction Tightly Coupled Memory (= ICCM)
JTAG Joint Test Action Group
LSU Load/Store Unit (part of core)
NMI Non-Maskable Interrupt
PIC Programmable Interrupt Controller
PLIC Platform-Level Interrupt Controller
POR Power-On Reset
RAM Random Access Memory
RAS Return Address Stack
ROM Read-Only Memory
SECDED Single-bit Error Correction/Double-bit Error Detection
SEDDED Single-bit Error Detection/Double-bit Error Detection
SoC System on Chip
TBD To Be Determined
TCM Tightly Coupled Memory (= CCM)
Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 XiX

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9-

1 VeeR EH1 Core Overview

22/12/2022

This chapter provides a high-level overview of the VeeR EH1 core and core complex. VeeR EH1 is a machine-
mode (M-mode) only, 32-bit CPU core which supports RISC-V's integer (I), compressed instruction (C), multiplication
and division (M), and instruction-fetch fence and CSR instructions (Z) extensions. The core is a 9-stage, dual-issue,
superscalar, mostly in-order pipeline with some out-of-order execution capability.

1.1 Features

The VeeR EH1 core complex’s feature set includes:

* RV32IMC-compliant RISC-V core with branch predictor

* Optional instruction and data closely-coupled memories with ECC protection
« Optional 4-way set-associative instruction cache with parity or ECC protection

* Optional programmable interrupt controller supporting up to 255 external interrupts

. Four system bus interfaces for instruction fetch, data accesses, debug accesses, and external DMA

accesses to closely-coupled memories (configurable as 64-bit AXI4 or AHB-Lite)

« Core debug unit compliant with the RISC-V Debug specification [3]

* 1GHz target frequency (for 28nm technology node)

1.2 Core Complex

Figure 1-1 depicts the core complex and its functional blocks which are described further in Section 1.3.

VeeR EH1 Core Complex

VeeR EH1 Core - RV32IMC

Debug Bus
Master

DCCM

ICCM

[-Cache

PIC

Debug

DMA Slave
Port

LSU Bus IFU Bus
Master Master

64-bit AXI14 64-bit AXI4 64-bit AXI4
or or or
AHB-Lite AHB-Lite AHB-Lite

Figure 1-1 VeeR EH1 Core Complex

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

64-bit AX14
or
AHB-Lite

JTAG

10f 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

1.3 Functional Blocks

The VeeR EH1 core complex’s functional blocks are described in the following sections in more detail.

1.3.1 Core

Figure 1-2 depicts the superscalar, dual-issue 9-stage core pipeline supporting four arithmetic logic units (ALUS)
labeled EX1 and EX4 in two pipelines 10 and |1, one load/store pipeline, one 3-cycle latency multiplier pipeline, and
one out-of-pipeline 34-cycle latency divider. There are four stall points in the pipeline: ‘Fetchl’, ‘Align’, ‘Decode’, and
‘Commit’. In the ‘Align’ stage, instructions are formed from 3 fetch buffers. In the ‘Decode’ stage, up to 2 instructions
from 4 instruction buffers are decoded. In the ‘Commit’ stage, up to 2 instructions per cycle are committed. Finally, in
the ‘Writeback’ stage, the architectural registers are updated.

Stage
eee—
1 Fetch 1 Stall Point
2 Fetch 2
- e——
3 Align Stall Point
~e——
4 Decode Stall Point
Load/Store Pipe Multiply Pipe Divider
S DC1 M1
34-cycle
6 DC2 M2 Out-of-
Pipe
7 DC3 M3
Load Result Mult. Result

S Commit Stall Point

(*I Writeback

Figure 1-2 VeeR EH1 Core Pipeline

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 2 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

2 Memory Map

This chapter describes the memory map as well as the various memories and their properties of the VeeR EH1
core.

2.1 Address Regions

The 32-bit address space is subdivided into sixteen fixed-sized, contiguous 256MB regions. Each region has a set of
access control bits associated with it (see Section 2.8.1).

2.2 Access Properties

Each region has two access properties which can be independently controlled. They are:

« Cacheable: Indicates if this region is allowed to be cached or not.

* Side effect: Indicates if read/write accesses to this region may have side effects (i.e., non-idempotent
accesses which may potentially have side effects on any read/write access; typical for 1/O, speculative or
redundant accesses must be avoided) or have no side effects (i.e., idempotent accesses which have no side
effects even if the same access is performed multiple times; typical for memory). Note that stores with
potential side effects (i.e., to non-idempotent addresses) cannot be combined with other stores in the core’s
write buffer.

2.3 Memory Types

There are two different classes of memory types mapped into the core’s 32-bit address range, core local and system
bus attached.

2.3.1 Core Local

23.1.1 ICCMand DCCM

Two dedicated memories, one for instruction and the other for data, are tightly coupled to the core. These memories
provide low-latency access and SECDED ECC protection. Their respective sizes (4, 8, 16, 32, 48, 64, 128, 256, or
512KB) are set as arguments at build time of the core.

2.3.1.2 Local Memory-mapped Control/Status Registers

To provide control for regular operation, the core requires a number of memory-mapped control/status registers. For
example, some external interrupt functions are controlled and serviced with accesses to various registers while the
system is running.

2.3.2 Accessed via System Bus

2.3.2.1 System ROMs

The SoC may host ROMs which are mapped to the core’s memory address range and accessed via the system bus.
Both instruction and data accesses are supported to system ROMs.

2.3.2.2 System SRAMs

The SoC hosts a variety of SRAMs which are mapped to the core’s memory address range and accessed via the
system bus.

2.3.2.3 System Memory-mapped I/O

The SoC hosts a variety of I/O device interfaces which are mapped to the core’s memory address range and
accessed via the system bus.

1 DCCM only

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 30f115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

2.3.3 Mapping Restrictions

Core-local memories and system bus-attached memories must be mapped to different regions. Mapping both
classes of memory types to the same region is not allowed.

Furthermore, it is recommended that all core-local memories are mapped to the same region.

2.4 Memory Type Access Properties

Table 2-1 specifies the access properties of each memory type. During system boot, firmware must initialize the
properties of each region based on the memory type present in that region.

Note that some memory-mapped I/O and control/status registers may have no side effects (i.e., are idempotent), but
characterizing all these registers as having potentially side effects (i.e., are non-idempotent) is safe.

Table 2-1 Access Properties for each Memory Type

Memory Type Cacheable Side Effect
Core Local

ICCM No No
DCCM No No
Memory-mapped control/status registers No Yes

Accessed via System Bus

ROMs Yes No
SRAMs Yes No
I/0s No Yes
Memory-mapped control/status registers No Yes

Note: ‘Cacheable = Yes’ and ‘Side Effect = Yes' is an illegal combination.

2.5 Memory Access Ordering

Loads and stores to system bus-attached memory (i.e., accesses with no side effects, idempotent) and devices (i.e.,
accesses with potential side effects, non-idempotent) go through a read buffer and a write buffer, respectively. The
buffers are implemented as FIFOs.

2.5.1 Load-to-Load and Store-to-Store Ordering

All loads are sent to the system bus interface in program order. Also, all stores are sent to the system bus interface
in program order.

2.5.2 Load/Store Ordering

2.5.2.1 Accesses with Potential Side Effects (i.e., Non-ldempotent)

When a load with potential side effects (i.e., non-idempotent) enters the read buffer, the entire write buffer is emptied,
i.e., both stores with no side effects (i.e., idempotent) and with potential side effects (i.e., nhon-idempotent) are drained
out. Loads with potential side effects (i.e., non-idempotent) are sent out to the system bus with their exact size.

Stores with potential side effects (i.e., non-idempotent) are neither coalesced nor forwarded to a load.

2.5.2.2 Accesses with No Side Effects (i.e., Idempotent)

Loads with no side effects (i.e., idempotent) are always issued as double-words and check the contents of the write
buffer:

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 4 0of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

1. Full address match (all load bytes present in the write buffer): Data is forwarded from the write buffer. The
load does neither freeze the pipe nor go out to the system bus.

2. Partial address match (some of the load bytes are in the write buffer): The entire write buffer is emptied,
then the load request goes to the system bus.

3. No match (none of the bytes are in the write buffer): The load is presented to the system bus interface
without waiting for the stores to drain.

2.5.2.3 Ordering of Store — Load with No Side Effects (i.e., Idlempotent)
A fence instruction is required to order an older store before a younger load with no side effects (i.e., idempotent).

Note: All memory-mapped register writes must be followed by a fence instruction to enforce ordering and
synchronization.

2.5.3 Fencing

25.3.1 Instructions

The fence. 1 instruction operates on the instruction memory and/or I-cache. This instruction causes a flush, a flash
invalidation of the I-cache, and a refetch of the next program counter (RFNPC). The refetch is guaranteed to miss
the I-cache. Note that since the fence. i instruction is used to synchronize the instruction and data streams, it also
includes the functionality of the fence instruction (see Sections 2.5.3.2 and 2.5.3.3).

2.5.3.2 Data

The fence instruction is implemented conservatively in VeeR EH1 to keep the implementation simple. It always
performs the most conservative fencing, independent of the instruction’s arguments. Thefence instruction is pre-
synced to make sure that there are no instructions in the LSU pipe. It stalls until the LSU indicates that the read
buffer has been cleared, the store and write buffers have been fully drained (i.e., are empty), and the bus barrier (see
Section 2.5.3.3) is finished. The fence instruction is only committed after all LSU buffers are idle and all outstanding
bus transactions are completed.

2.5.33 Bus Barrier

VeeR EH1 provides a bus barrier mechanism. Executing a fence instruction forces a bus synchronization action
which requires all outstanding bus transactions (reads and writes) for the LSU bus master to complete.

Hardware uses an 8-bit counter with which it continuously keeps track of the number of outstanding bus transactions.
For every request sent, this counter is incremented; for every response received, this counter is decremented. The
maximum number of outstanding bus transactions is 255. If this limit is reached, no further transactions are sent to
the bus until the number of outstanding bus transactions is smaller than 255. A bus barrier requires the count to
reach 0 before the barrier is finished.

Loads are not allowed to be forwarded across an older bus barrier. The LSU enforces this within the core pipeline.
Also, the LSU does not forward from the write buffer if the buffer itself contains a bus barrier.

The fence instruction leverages the semantics of the bus barrier. Afence instruction waits for all prior bus
transactions to finish in addition to the write buffer being fully drained before proceeding. Instructions after a
fence. 1 are guaranteed to see previous writes in the case of self-modifying code.

2.5.4 Imprecise Data Bus Errors

All store errors as well as non-blocking load errors on the system bus are imprecise. The address of the first
occurring imprecise data system bus error is logged and a non-maskable interrupt (NMI) is flagged for the first
reported error only. For stores, if there are other stores in the write buffer behind the store which had the error, these
stores are sent out on the system bus and any error responses are ignored. Similarly, for non-blocking loads, any
error responses on subsequent loads sent out on the system bus are ignored. NMIs are fatal, architectural state is
lost, and the core needs to be reset. The reset also unlocks the first error address capture register again.

Note: It is possible to unlock the first error address capture register with a write to an unlock register as well (see
Section 2.8.4 for more details), but this may result in unexpected behavior.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 50f 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

2.6 Memory Protection

To eliminate issuing speculative accesses to the IFU and LSU bus interfaces, VeeR EH1 provides a rudimentary
memory protection mechanism for instruction and data accesses outside of the ICCM and DCCM memory regions.
Separate core build arguments for instructions and data are provided to enable and configure up to 8 address
windows each.

An instruction fetch to a non-ICCM region must fall within the address range of at least one instruction access window
for the access to be forwarded to the IFU bus interface. If at least one instruction access window is enabled, non-
speculative fetch requests which are not within the address range of any enabled instruction access window cause a
precise instruction access fault exception. If none of the 8 instruction access windows is enabled, the memory
protection mechanism for instruction accesses is turned off. For the ICCM region, accesses within the ICCM’s
address range are allowed. However, any access not within the ICCM’s address range results in a precise instruction
access fault exception.

Similarly, a load/store access to a non-DCCM or non-PIC memory-mapped control register region must fall within the
address range of at least one data access window for the access to be forwarded to the LSU bus interface. If at least
one data access window is enabled, non-speculative load/store requests which are not within the address range of
any enabled data access window cause a precise load/store address misaligned or access fault exception. If none of
the 8 data access windows is enabled, the memory protection mechanism for data accesses is turned off. For the
DCCM and PIC memory-mapped control register region(s), accesses within the DCCM'’s or the PIC memory-mapped
control register’'s address range are allowed. However, any access not within the DCCM’s or PIC memory-mapped
control register’s address range results in a precise load/store address misaligned or access fault exception.

The configuration parameters for each of the 8 instruction and 8 data access windows are:

. Enable/disable instruction/data access window 0..7,
* abase address of the window (which must be 64B-aligned), and
* amask specifying the size of the window (which must be an integer-multiple of 64 bytes minus 1).

See Section 16.1 for more information.

2.7 Exception Handling

Capturing the faulting effective address causing an exception helps assist firmware in handling the exception and/or
provides additional information for firmware debugging. For precise exceptions, the faulting effective address is
captured in the standard RISC-V mtval register (see Section 3.1.17 in [2]). For imprecise exceptions, the address of
the first occurrence of the error is captured in a platform-specific error address capture register (see Section 2.8.3).

2.7.1 Imprecise Bus Error Non-Maskable Interrupt

Store bus errors are fatal and cause a non-maskable interrupt (NMI). The store bus error NMI has anmcause value
of 0xF000_0000.

Likewise, non-blocking load bus errors are fatal and cause a non-maskable interrupt (NMI). The non-blocking load
bus error NMI has an mcause value of 0XFO00_0001.

Note: The address of the first store or non-blocking load error on the D-bus is captured in themdseac register (see
Section 2.8.3). The register is unlocked either by resetting the core after the NMI has been handled or by a write to
the mdeau register (see Section 2.8.4). While themdseac register is locked, subsequent D-bus errors are gated (i.e.,
they do not cause another NMI), but NMI requests originating external to the core are still honored.

Note: If store and non-blocking load bus errors are reported in the same clock cycle (i.e., the LSU’s write and read
buffers simultaneous indicate a bus error), the non-blocking load bus error has higher priority.

2.7.2 Correctable Error Local Interrupt

I-cache parity/ECC errors, ICCM correctable ECC errors, and DCCM correctable ECC errors are counted in separate
correctable error counters (see Sections 3.5.1, 3.5.2, and 3.5.3, respectively). Each counter also has its separate
programmable error threshold. If any of these counters has reached its threshold, a correctable error local interrupt is
signaled. Firmware should determine which of the counters has reached the threshold and reset that counter.

A local-to-the-core interrupt for correctable errors has pending (mceip) and enable (mceie) bits in bit position 30 of the
standard RISC-V mip (see Table 11-2) and mie (see Table 11-1) registers, respectively. The priority is lower than

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 6 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

RISC-V External interrupt, but higher than RISC-V Timer interrupt (see Table 13-1). The correctable error local
interrupt has an mcause value of 0x8000_001E (see Table 11-3).

2.7.3 Rules for Core-Local Memory Accesses

The rules for instruction fetch and load/store accesses to core-local memories are:

1. Aninstruction fetch access to a region

a.

b.

containing one or more ICCM sub-region(s) causes an exception if

i. the access is not completely within the ICCM sub-region, or

ii. the boundary of an ICCM to a non-ICCM sub-region and vice versa is crossed,
even if the region contains a DCCM/PIC memory-mapped control register sub-region.

not containing an ICCM sub-region goes out to the system bus, even if the region contains a
DCCM/PIC memory-mapped control register sub-region.

2. Aload/store access to a region

a.

containing one or more DCCM/PIC memory-mapped control register sub-region(s)causes an
exception if
i. the access is not completely within the DCCM/PIC memory-mapped control register sub-
region, or
ii. the boundary of
1. aDCCM to a non-DCCM sub-region and vice versa, or
2. a PIC memory-mapped control register sub-region
is crossed,
even if the region contains an ICCM sub-region.
not containing a DCCM/PIC memory-mapped control register sub-region goes out to the system
bus, even if the region contains an ICCM sub-region.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 7 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

2.7.4 Unmapped Addresses

Table 2-2 Handling of Unmapped Addresses

22/12/2022

Access | CorelBus Side Effect | Action Comments
Core N/A Instruction access fault exception*® | precise exception
Fetch
Bus N/A Instruction access fault exception? | (€.g., address out-of-range)
. Precise exception
Core No Load access fault exception*5
(e.g., address out-of-range)
No®
(non-
blocking | ise. fatal
* Imprecise, fata
load) Non-blocking load bus error NMI P _
Vst (see Section 2.7.1) + Capture store address in core bus
interface
Load (non-
blocking
Bus load)
.
(bINOk' Precise exception
ocking e
load) (e.g., address out-of-range)
Load access fault exception
Yes®) .
(blocki * Precise exception
ocking . .
load) Hold off all external interrupts
Store/AMO? access fault : .
Core No a5 Precise exception
exception*
Store No * Imprecise, fatal
Bus Store bus error NMI .
Yes (see Section 2.7.1) . @apture store address in core bus
interface
DMA
Read
Bus N/A DMA slave bus error Send error response to master
DMA
Write

Note: It is recommended to provide address gaps between different memories to ensure unmapped address
exceptions are flagged if memory boundaries are inadvertently crossed.

2 If any byte of an instruction is from an unmapped address, an instruction access fault precise exception is flagged.

3 Exception also flagged for fetches to the DCCM address range if located in the same region, or if located in different regions and

no SoC address is a match.

4 Exception also flagged for PIC load/store not word-sized or address not word-aligned.

5 Exception also flagged for loads/stores to the ICCM address range if located in the same region, or if located in different regions

and no SoC address is a match

5 1f bldmad bit of mfdc register is set (see Section 2.13.4 and Table 10-1).

" If bldmad bit of mfdc register is cleared (default) and instruction dependent on load’s data following within a two-cycle window (see

Section 2.13.4 and Table 10-1).

8 If bldmad bit of mfdc register is cleared (default) (see Section 2.13.4 and Table 10-1).

® AMO refers to the RISC-V “A” (atomics) extension, which is not implemented in VeeR EHL.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

8 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

2.7.5 Misaligned Accesses
General notes:

« The core performs a misalignment check during the address calculation.

* Accesses across region boundaries always cause a misaligned exception.

« Splitting a load/store from/to an address with no side effects (i.e., idempotent) is not of concern for VeeR
EH1.

Table 2-3 Handling of Misalighed Accesses

Access | Core/lBus Side Region | Action Comments
Effect | Cross
Core N/A
Fetch N/A Not possible©
Bus N/A
Core No Load split into multiple DCCM Split performed by core
read accesses
Load No Load Sp!lt into multiple bus Split performed by core
transactions
Bus —
Yes!t No Load address misaligned Precise exception
exception
Core No Stpre splitinto multiple DCCM Split performed by core
write accesses
Store No Store Sp.“t into multiple bus Split performed by core
transactions
Bus —
veslt Store/A_MO address misaligned Precise exception
exception
Fetch N/A Not possible®
Load Load address misaligned Precise excenption
N/A N/A Yes exception P
Store/AMO address misaligned . .
Store . Precise exception
exception
DMA
Read
Bus N/A N/A DMA slave bus error Send error response to master
DMA
Write!?

10 Accesses to the I-cache or ICCM initiated by fetches never cross 16B boundaries. I-cache fills are always aligned to 64B.
Misaligned accesses are therefore not possible.

1 The RISC-V Privileged specification recommends that misaligned accesses to regions with potential side-effects should trigger an
access fault exception, instead of a misaligned exception (see Section 3.5.6 in [2]). Note that VeeR EH1 triggers a misaligned
exception in this case. To avoid potential side-effects, the exception handler should not emulate a misaligned access using multiple
smaller aligned accesses.

12 This case is in violation with the write alignment rules specified in Section 2.13.2.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 9 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

2.7.6 Uncorrectable ECC Errors

Table 2-4 Handling of Uncorrectable ECC Errors

22/12/2022

Access | Core/lBus Side Effect | Action Comments
Core N/A ; ; ;
. . Precise exception (i.e., for oldest
Fetch _— A Instruction access fault exception instruction in pipeline only)
No . Precise exception (i.e., for non-
Core Load access fault exception - o
Yes speculative load only)
No'?
(non-
blocking)
load) . * Imprecise, fatal
Non-blocking load bus error NMI .
3 (see Section 2.7.1) « Capture store address in core bus
Yes interface
Load (non-
blocking
Bus load)
N014
(blocking
load)
" Load access fault exception Precise exception
Yes
(blocking
load)
NO . . . _
Core Store/AMO access fault exception Precise exception (i-e., for non
Yes speculative store only)
Store No * Imprecise, fatal
Store bus error NMI)
Bus (see Section 2.7.1) * Capture store address in core bus
Yes interface
DMA
Read Bus N/A DMA slave bus error Send error response to master

Note: DMA write accesses to the ICCM or DCCM always overwrite entire 32-bit words and their corresponding ECC
bits. Therefore, ECC bits are never checked and errors not detected on DMA writes.

13 If bldmad bit of mfdc register is set (see Section 2.13.4 and Table 10-1).

14 1f bldmad bit of mfdc register is cleared (default) and instruction dependent on load’s data following within a two-cycle window
(see Section 2.13.4 and Table 10-1).

15 If bldmad bit of mfdc register is cleared (default) (see Section 2.13.4 and Table 10-1).

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

10 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

2.7.7 Correctable ECC/Parity Errors

Table 2-5 Handling of Correctable ECC/Parity Errors

22/12/2022

Access | Core/lBus Side Effect | Action Comments
For I-cache accesses:
* Increment correctable I-cache
error counter in core
« If I-cache error threshold reached, | ¢ For all fetches from I-cache (i.e.,
signal correctable error local out of pipeline, independent of
interrupt (see Section 3.5.1) actual instruction execution)
+ Invalidate all cache lines of set * For I-cache with tag/instruction
ECC protection, single- and
* Perform RFPC flush double-bit errors are recoverable
* Flush core pipeline
» Refetch cache line from SoC
memory
Core N/A For ICCM accesses:
* Increment correctable ICCM error
counter in core
Fetch « If ICCM error threshold reached, | * For all fetches from ICCM (i.e.,
signal correctable error local out of pipeline, independent of
interrupt (see Section 3.5.2) actual instruction execution)
« Perform RFPC flush * ICCM errors trigger an RFPC
o (ReFetch PC) flush since in-line
* Flush core pipeline correction would require an
» Write corrected data back to additional cycle
ICCM
» Refetch instruction(s) from
ICCM
* Increment correctable error
counter in SoC Errors in SoC memories are
BUS N/A « If error threshold reached, signal corrected at memory boundary and
external interrupt autonomously written back to
« Write corrected data back to Soc | MemMory array
memory
No * Increment correctable DCCM
error counter in core)
 For non-speculative accesses
* If DCCM error threshold reached, only
Core signal correctable error local Lo
Yes interrupt (see Section 3.5.3) * DCCM errors are in-line corrected
. and written back to DCCM
» Write corrected data back to
Load DCCM
No * Increment correctable error
counter in SoC Errors in SoC memories are
BuUS « If error threshold reached, signal corrected at memory boundary and
Yes external interrupt autonomously written back to
« Write corrected data back to Soc | Meémory array
memory

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

11 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022
Access | Core/Bus Side Effect | Action Comments
No * Increment correctable DCCM
error counter in core .
 For non-speculative accesses
* If DCCM error threshold reached, only
Core signal correctable error local oo
Yes interrupt (see Section 3.5.3) . DCCM_errors are in-line corrected
] and written back to DCCM
* Write corrected data back to
Store DCCM
No * Increment correctable error
counter in SoC Errors in SoC memories are
Bus « If error threshold reached, signal corrected at memory boundary and
Yes external interrupt autonomously written back to
« Write corrected data back to SoC | Memory array
memory
For ICCM accesses:
* Increment correctable ICCM error
counter in core
DMA read access errors to ICCM
* If ICCM error threshold reached, are in-line corrected and written
signal correctable error local back to ICCM
interrupt (see Section 3.5.2)
» Write corrected data back to
ICCM
EM% Bus N/A
ea For DCCM accesses:
* Increment correctable DCCM
error counter in core
DMA read access errors to DCCM
* If DCCM error threshold reached, [5re in-line corrected and written
signal correctable error local back to DCCM
interrupt (see Section 3.5.3)
» Write corrected data back to
DCCM

Note: Counted errors could be from different, unknown memory locations.

Note: DMA write accesses to the ICCM or DCCM always overwrite entire 32-bit words and their corresponding ECC
bits. Therefore, ECC bits are never checked and errors not detected on DMA writes.

2.8 Control/Status Registers

A summary of platform-specific control/status registers in CSR space:

* Region Access Control Register (mrac) (see Section 2.8.1)

*« Memory Synchronization Trigger Register (dmst) (see Section 2.8.2)

« D-Bus First Error Address Capture Register (mdseac) (see Section 2.8.3)
« D-Bus Error Address Unlock Register (mdeau) (see Section 2.8.4)

All reserved and unused bits in these control/status registers must be hardwired to ‘0’. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

2.8.1 Region Access Control Register (mrac)

A single region access control register is sufficient to provide independent control for 16 address regions.

Note: To guarantee that updates to the mrac register are in effect, if a region being updated is in the load/store
space, a fence instruction is required. Likewise, if a region being updated is in the instruction space, afence. i
instruction (which flushes the I-cache) is required.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

12 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Note: The sideeffect access control bits are ignored by the core for load/store accesses to addresses mapped to
core-local memories (i.e., DCCM and ICCM) and PIC memory-mapped control registers as well as for all instruction
fetch accesses. The cacheable access control bits are ignored for instruction fetch accesses from addresses
mapped to the ICCM, but not for any other addresses.

Note: The combination ‘11’ (i.e., side effect and cacheable) is illegal. Writing ‘11’ is mapped by hardware to the legal
value ‘10’ (i.e., side effect and non-cacheable).

This register is mapped to the non-standard read/write CSR address space.

Table 2-6 Region Access Control Register (mrac, at CSR 0x7C0)

Field Bits Description Access | Reset

Y = 0..15 (= Region)

sideeffectY | Y*2+1 | Side effect indication for region Y: R/W 0
0: No side effects (idempotent)
1: Side effects possible (non-idempotent)

cacheableY | Y*2 Caching control for region Y- R/W 0
0: Caching not allowed
1: Caching allowed

2.8.2 Memory Synchronization Trigger Register (dmst)

The dmst register provides triggers to force the synchronization of memory accesses. Specifically, it allows a
debugger to initiate operations that are equivalent to thefence. i (see Section 2.5.3.1) and fence (see Section
2.5.3.2) instructions.

Note: This register is accessible in Debug Mode only. Attempting to access this register in machine mode raises an
illegal instruction exception.

The fence_i and fence fields of the dmst register have W1RO0 (Write 1, Read 0) behavior, as also indicated in the
‘Access’ column.

This register is mapped to the non-standard read/write CSR address space.

Table 2-7 Memory Synchronization Trigger Register (dmst, at CSR 0x7C4)

Field Bits Description Access | Reset
Reserved 31:2 Reserved R 0
fence 1 Trigger operation equivalent to fence instruction RO/W1 | O
fence_i 0 Trigger operation equivalent to fence. i instruction RO/W1 | O

2.8.3 D-Bus First Error Address Capture Register (mdseac)

The address of the first occurrence of a store or non-blocking load error on the D-bus is captured in themdseac
register. Latching the address also locks the register. While themdseac register is locked, subsequent D-bus errors
are gated (i.e., they do not cause another NMI), but NMI requests originating external to the core are still honored.
The mdseac register is unlocked by either a core reset (which is the safer option) or by writing to themdeau register
(see Section 2.8.4).

Note: The address captured in this register is the target (i.e., base) address of the store or non-blocking load which
experienced an error.

Note: The NMI handler may use the value stored in themcause register to differentiate between a D-bus store error,
a D-bus non-blocking load error, and a core-external event triggering an NMI.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 13 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022
This register is mapped to the non-standard read-only CSR address space.
Table 2-8 D-Bus First Error Address Capture Register (mdseac, at CSR 0xFCO0)
Field Bits Description Access | Reset
erraddr 31:0 Address of first occurrence of D-bus store or non-blocking load error R 0

2.8.4 D-Bus Error Address Unlock Register (mdeau)

Writing to the mdeau register unlocks the mdseac register (see Section 2.8.3) after a D-bus error address has been
captured. This write access also reenables the signaling of an NMI for a subsequent D-bus error.

Note: Nested NMIs might destroy core state and, therefore, receiving an NMI should still be considered fatal. Issuing
a core reset is a safer option to deal with a D-bus error.

The mdeau register has WARO (Write Any value, Read 0) behavior. Writing ‘0’ is recommended.

This register is mapped to the non-standard read/write CSR address space.

Table 2-9 D-Bus Error Address Unlock Register (mdeau, at CSR 0xBCO0)

Field

Bits

Description

Access

Reset

Reserved

31:0

Reserved

RO/WA

2.9 Memory Address Map

Table 2-10 summarizes an example of the VeeR EH1 memory address map, including regions as well as start and
end addresses for the various memory types.

Table 2-10 VeeR EH1 Memory Address Map (Example)

Region | Start Address End Address Memory Type
0x0000_0000 0x0003_FFFF Reserved
0x0004_0000 0x0005_FFFF ICCM (region: 0, offset: 0x4000, size: 128KB)
0x0 0x0006_0000 0x0007_FFFF Reserved
0x0008_0000 0x0009_FFFF DCCM (region: 0, offset: 0x8000, size: 128KB)
0x000A_0000 OXOFFF_FFFF | Reserved
Ox1 0x1000_0000 Ox1FFF_FFFF | System memory-mapped CSRs
0x2 0x2000_0000 Ox2FFF_FFFF
0x3 0x3000_0000 Ox3FFF_FFFF
0x4 0x4000_0000 Ox4FFF_FFFF
0x5 0x5000_0000 Ox5FFF_FFFF System SRAMS,
system ROMs, and
0x6 0x6000_0000 Ox6FFF_FFFF system memory-mapped I/O device interfaces
0x7 0x7000_0000 OX7FFF_FFFF
0x8 0x8000_0000 Ox8FFF_FFFF
0x9 0x9000_0000 Ox9FFF_FFFF

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

14 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

22/12/2022

Region | Start Address | End Address Memory Type
OxA 0xA000_0000 OXAFFF_FFFF
0xB 0xB000_0000 OxBFFF_FFFF
0xC | 0xC000_0000 | OXCFFF_FFFF
0xD 0xD000_0000 OXxDFFF_FFFF
OxE 0xE000_0000 OXEFFF_FFFF
OxF 0xF000_0000 OXFFFF_FFFF
2.10 Partial Writes

Rules for partial writes handling are:

e Core-local addresses: The core performs a read-modify-write operation and updates ECC to core-local
memories (i.e., I- and DCCMs).

*« SoC addresses: The core indicates the valid bytes for each bus write transaction. The addressed SoC
memory or device performs a read-modify-write operation and updates its ECC.

2.11 Expected SoC Behavior for Accesses

The VeeR EH1 core expects that the SoC responds to all system bus access requests it receives from the core.
System bus accesses include instruction fetches, load/store data accesses as well as debug system bus accesses.
A response may either be returning the requested data (e.g., instructions sent back to the core for fetches or data for
loads), an acknowledgement indicating the successful completion of a bus transaction (e.g., acknowledging a store),
or an error response (e.g., an error indication in response to an attempt to access an unmapped address). If the SoC
does not respond to every single bus transaction, the core may hang.

2.12 Speculative Bus Accesses

Deep core pipelines require a certain degree of speculation to maximize performance. The sections below describe
instruction and data speculation in the VeeR EH1 core.

Note that speculative accesses to memory addresses with side effects may be entirely avoided by adding the build-
argument-selected and -configured memory protection mechanism described in Section 2.6.

2.12.1 Instructions

Instruction cache misses on VeeR EH1 are speculative in nature. The core may issue speculatively fetch accesses
on the IFU bus interface for an instruction cache miss in the following cases:

* due to an earlier exception or interrupt,

e due to an earlier branch mispredict,

. due to an incorrect branch prediction, and

¢ due to an incorrect Return Address Stack (RAS) prediction.

Issuing speculative accesses on the IFU bus interface is benign as long as the platform is able to handle accesses to
unimplemented memory and to prevent accesses to SoC components with read side effects by returning random
data and/or a bus error condition. The decision of which addresses are unimplemented and which addresses with
potential side effects need to be protected is left to the platform.

Instruction fetch speculation can be limited, though not entirely avoided, by turning off the core’s branch predictor
including the return address stack. Writing a ‘1’ to the bpd bit in themfdc register (see Table 10-1) disables branch
prediction including RAS.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 15 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

2.12.2 Data

The VeeR EH1 core does not issue any speculative data accesses on the LSU bus interface.

2.13 DMA Slave Port

The Direct Memory Access (DMA) slave port is used for read/write accesses to core-local memories initiated by
external masters. For example, external masters could be DMA controllers or other CPU cores located in the SoC.

2.13.1 Access

The DMA slave port allows read/write access to the core’s ICCM and DCCM. However, the PIC memory-mapped
control registers are not accessible via the DMA port.

2.13.2 Write Alignment Rules

For writes to the ICCM and DCCM through the DMA slave port, accesses must be 32- or 64-bit aligned, and 32 bits
(word) or 64 bits (double-word), respectively, wide to avoid read-modify-write operations for ECC generation.

More specifically, DMA write accesses to the ICCM or DCCM must have a 32- or 64-bit access size and be aligned to
their respective size. The only write byte enable values allowed for AX14 are 0xOF, 0xFO, and OxFF.

2.13.3 Quality of Service

Accesses to the ICCM and DCCM by the core have higher priority if the DMA FIFO is not full. However, to avoid
starvation, the DMA slave port's DMA controller may periodically request a stall to get access to the pipe if a DMA
request is continuously blocked.

The dqc field in the mfdc register (see Table 10-1) specifies the maximum number of clock cycles a DMA access
request waits at the head of the DMA FIFO before requesting a bubble to access the pipe. For example, if dqcis 0, a
DMA access requests a bubble immediately (i.e., in the same cycle); if dqc is 7 (the default value), a waiting DMA
access requests a bubble on the 8" cycle. For a DMA access to the ICCM, it may take up to 3 additional cycles®
before the access is granted. Similarly, for a DMA access to the DCCM, it may take up to 4 additional cycles’ before
the access is granted.

2.13.4 Non-blocking DMA Control

DMA accesses to the VeeR EH1 core are stalled while a fence is pending or when the core freezes the pipeline due
to a blocking load to external memory (i.e., either a side-effect load or a load with an instruction dependent on the
load’s data following within a two-cycle window). Depending on the SoC, these DMA slave stall conditions may
potentially lead to a timeout by the DMA master.

The bldmad bit of the mfdc register (see Table 10-1) controls if a DMA access is stalled by the conditions listed
above, or if DMA accesses may neither be stalled by pending fences nor any loads to external memory (i.e., all loads
are non-blocking). The default setting is for these conditions to stall DMA accesses.

2.13.5 Ordering of Core and DMA Accesses

Accesses to the DCCM or ICCM by the core and the DMA slave port are asynchronous events relative to one
another. There are no ordering guarantees between the core and the DMA slave port accessing the same or
different addresses.

2.14 Reset Signal and Vector

The core provides a 31-bit wide input bus at its periphery for a reset vector. The SoC must provide the reset vector
on the rst_vec[31:1] bus, which could be hardwired or from a register. Therst_1 input signal is active-low,

16 More cycles may be needed in the uncommon case of the pipe currently handling a correctable ECC error for a core fetch
request, which needs to be finished first.

171f the core pipeline is currently frozen, the DMA access is further delayed until the freeze condition is resolved.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 16 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

asynchronously asserted, and synchronously deasserted (see also Section 14.3). When the core is reset, it fetches
the first instruction to be executed from the address provided on the reset vector bus. Note that the applied reset
vector must be pointing to the ICCM, if enabled, or a valid memory address, which is within an enabled instruction
access window if the memory protection mechanism (see Section 2.6) is used.

Note: The core’s 31 general-purpose registers (x1 - x31) are cleared on reset.

2.15 Non-Maskable Interrupt (NMI) Signal and Vector

The core provides a 31-bit wide input bus at its periphery for a non-maskable interrupt (NMI) vector. The SoC must
provide the NMI vector on the nmi_vec[31:1] bus, either hardwired or sourced from a register.

Note: NMI is entirely separate from the other interrupts and not affected by the selection of Direct vs Vectored mode.

The SoC may trigger an NMI by asserting the low-to-high edge-triggered, asynchronousnmi_int input signal. This
signal must be asserted for at least two full core clock cycles to guarantee it is detected by the core since shorter
pulses might be dropped by the synchronizer circuit. Furthermore, thenmi_int signal must be deasserted for a
minimum of two full core clock cycles and then reasserted to signal the next NMI request to the core. If the SoC does
not use the pin-asserted NMI feature, it must hardwire the nmi_int input signal to 0.

In addition to NMls triggered by the SoC, a core-internal NMI request is signaled when a D-bus store or non-blocking
load error has been detected.

When the core receives either an SoC-triggered or a core-internal NMI request, it fetches the next instruction to be
executed from the address provided on the NMI vector bus. The reason for the NMI request is reported in the
mcause register according to Table 2-11.

Table 2-11 Summary of NMI mcause Values

Value

Description
mcause[31:0] 5

0x0000_0000 NMI pin assertion (nmi_int input signal, see above)

0xF000_0000 Machine D-bus store error NMI (see Section 2.7.1)

0xF000_0001 Machine D-bus non-blocking load error NMI (see Section 2.7.1)

Note: NMls are typically fatal! Section 3.4 of the RISC-V Privileged specification [2] states that NMIs are only used
for hardware error conditions and cause an immediate jump to the address at the NMI vector running in M-mode
regardless of the state of a hart’s interrupt enable bits. The NMI can thus overwrite state in an active M-mode
interrupt handler and normal program execution cannot resume. Unlike resets, NMIs do not reset hart state, enabling
diagnosis, reporting, and possible containment of the hardware error. Because NMIs are not maskable, the NMI
handling routine performing diagnosis and reporting is itself susceptible to further NMls, possibly making any such
activity meaningless and erroneous in the face of error storms.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 17 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

3 Memory Error Protection
3.1 General Description

3.1.1 Parity

Parity is a simple and relatively cheap protection scheme generally used when the corrupted data can be restored
from some other location in the system. A single parity check bit typically covers several data bits. Two parity
schemes are used: even and odd parity. The total number of ‘1’ bits are counted in the protected data word,
including the parity bit. For even parity, the data is deemed to be correct if the total count is an even number.
Similarly, for odd parity if the total count is an odd number. Note that double-bit errors cannot be detected.

3.1.2 Error Correcting Code (ECC)

A robust memory hierarchy design often includes ECC functions to detect and, if possible, correct corrupted data.
The ECC functions described are made possible by Hamming code, a relatively simple yet powerful ECC code. It
involves storing and transmitting data with multiple check bits (parity) and decoding the associated check bits when
retrieving or receiving data to detect and correct errors.

The ECC feature can be implemented with Hamming based SECDED (Single-bit Error Correction and Double-bit
Error Detection) algorithm. The design can use the (39, 32) code — 32 data bits and 7 parity bits depicted in Figure
6-1 below. In other words, the Hamming code word width is 39 bits, comprised of 32 data bits and 7 check bits. The
minimum number of check bits needed for correcting a single-bit error in a 32-bit word is six. The extra check bit
expands the function to detect double-bit errors as well.

ECC codes may also be used for error detection only if other means exist to correct the data. For example, the I-
cache stores exact copies of cache lines which are also residing in SoC memory. Instead of correcting corrupted
data fetched from the I-cache, erroneous cache lines may also be invalidated in the I-cache and refetched from SoC
memory. A SEDDED (Single-bit Error Detection and Double-bit Error Detection) code is sufficient in that case and
provides even better protection than a SECDED code since double-bit errors are corrected as well but requires fewer
bits to protect each codeword. Note that flushing and refetching is the industry standard mechanism for recovering
from I-cache errors, though commonly still referred to as ‘SECDED’.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 18 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

32-Bit Data In

32-Bit Data

ECC Code
Generator

7-Bit ECC 32-Bit Data

Address

Data Out

ECC Out

ECC Error Detection and Correction

Double-Bit = Single-Bit 32-Bit
Error Error Corrected
Data Out

Figure 3-1 Conceptual Block Diagram — ECC in a Memory System

3.2 Selecting the Proper Error Protection Level

Choosing a protection level that is too weak might lead to loss of data or silent data corrupted, choosing a level that is
too strong incurs additional chip die area (i.e., cost) and power dissipation. Supporting multiple protection schemes
for the same design increases the design and verification effort.

Sources of errors can be divided into two major categories:

* Hard errors (e.g., stuck-at bits), and
* Soft errors (e.g., weak bits, cosmic-induced soft errors)

Selecting an adequate error protection level — e.g., none, parity, or ECC -- depends on the probability of an error to
occur, which depends on several factors:

¢ Technology node

* SRAM structure size

¢ SRAM cell design

* Type of stored information
o E.g., instructions in I-cache can be refetched, but
o0 data might be lost if not adequately protected

- Stored information being used again after corruption

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 19 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Typically, a FIT (Failure In Time) rate analysis is done to determine the proper protection level of each memory in a
system. This analysis is based on FIT rate information for a given process and SRAM cell design which are typically
available from chip manufacturer.

Also important is the SRAM array design. The SRAM layout can have an impact on if an error is correctable or not.
For example, a single cosmic-induced soft error event may destroy the content of multiple bit cells in an array. If the
destroyed bits are covered by the same codeword, the data cannot be corrected or possibly even detected.
Therefore, the bits of each codeword should be physically spread in the array as far apart as feasibly possible. In a
properly laid out SRAM array, multiple corrupted bits may result in several single-bit errors of different codewords
which are correctable.

3.3 Memory Hierarchy
Table 3-1 summarizes the components of the VeeR EH1 memory hierarchy and their respective protection scheme.

Table 3-1 Memory Hierarchy Components and Protection

Memory Type Abbreviation Protection Reason/Justification
Instruction Cache I-cache Parity or « Instructions can be refetched if
SEDDED error is detected
ECC!8 (data
and tag)
Instruction Closely-Coupled Memory ICCM - Large SRAM arrays
Data Closely-Coupled Memory DCCM SECDED ECC | « Data could be modified and is only
Core-complex-external Memories SoC memories valid copy

3.4 Error Detection and Handling

Table 3-2 summarizes the detection of errors, the recovery steps taken, and the logging of error events for each of
the VeeR EH1 memories.

Note: Memories with parity or ECC protection must be initialized with correct parity or ECC. Otherwise, a read
access to an uninitialized memory may report an error. The method of initialization depends on the organization and
capabilities of the memory. Initialization might be performed by a memory self-test or depend on firmware to
overwrite the entire memory range (e.g., via DMA accesses).

Note: If the DCCM is uninitialized, a load following a store to the same DCCM address may get incorrect data. If
firmware initializes the DCCM, aligned word-sized stores should be used (because they don’t check ECC), followed
by a fence, before any load instructions to DCCM addresses are executed.

18 Some highly reliable/available applications (e.g., automotive) might want to use an ECC-protected I-cache, instead of parity
protection. Therefore, SEDDED ECC protection is optionally provided in VeeR EH1 as well, selectable as a core build argument.
Note that the I-cache area increases significantly if ECC protection is used.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 20 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022
Table 3-2 Error Detection, Recovery, and Logging
Recovery Logging
Memory Type | Detection Single-bit Error | Double-bit Single-bit Error | Double-bit
Error Error

I-cache » Each 16-bit For parity:
chunk of - - .
instructions * For instruction Undetected * Increment I- No action
protected with and tag parity cache
1 parity bit or 5 errors, correctable "

ECC bits mvsﬂld?te all f error counter
cache lines o .
« Each cache cet If error counter
line tag has reached
protected with | * Refetch cache threshold,
1 parity bit or 5 line from SoC signal
ECC bits memory correctable
) . error local
* Parity/ECC bits interrupt
checked in (see Section
pipeline 3.5.1)
For ECC:
* For instruction and tag single- and | ¢ Increment I-cache correctable
double ECC errors, invalidate all error counter®®
cache lines of set « If error counter has reached
» Refetch cache line from SoC threshold, signal correctable error
memory?° local interrupt
(see Section 3.5.1)

ICCM - Each 32-bit For fetches?!: Fatal error?? * Increment?* For fetches?2
chunk . « Write corrected | (Uncorrectable) ICCM single- Instruction
protected with data/ECC back bit error access fault
7 ECC hits to ICCM counter exception

* ECC checked « Refetch « If error counter
in pipeline instruction has reached
from ICCM?2° threshold,
signal
For DMA reads: correctable For DMA reads:
« Correct error error local Send error
in-line |(nterrgpt ; response on
see Section
» Write corrected 3.5.2) DMA slave bus
data/ECC back to master
to ICCM

9 1t is unlikely, but possible that multiple I-cache parity/ECC errors are detected on a cache line in a single cycle, however, the I-
cache single-bit error counter is incremented only by one.

20 A RFPC (ReFetch PC) flush is performed since in-line correction would create timing issues and require an additional clock cycle
as well as a different architecture.

2L All single-bit errors detected on fetches are corrected, written back to the ICCM, and counted, independent of actual instruction

execution.

2 For oldest instruction in pipeline only.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

21 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022
Recovery Logging
Memory Type | Detection Single-bit Error | Double-bit Single-bit Error | Double-bit
Error Error
DCCM Each 32-bit « Correct error Fatal error®* * Increment?? For loads?*:
chunk _ in-line (uncorrectable) D_CCM single- | Load access
protected with | , \write23 bit error fault exception
7 ECC hits corrected counter
For stores?:
* ECC checked data/ECC back « If error counter
in pipeline to DCCM has reached Store/AMO
threshold, access fault
signal exception
correctable]
error local For DMA reads:
interrupt Send error

(see Section
3.5.3)

response on
DMA slave bus
to master

SoC memories

ECC checked at
SoC memory
boundary

» Correct error

e Send corrected
data on bus

* Write corrected
data/ECC back
to SRAM array

* Fatal error
(uncorrectable)

» Data sent on
bus with error
indication

* Core must
ignore sent
data

Increment SoC
single-bit error
counter local to
memory

If error counter
has reached
threshold,
signal external
interrupt

For fetches:

Instruction
access fault
exception

For loads:

Load access
fault exception

For stores:
Store bus error
NMI

(see Section
2.7.1)

General comments:

« No address information of each individual correctable error is captured.
* Stuck-at faults:
Stuck-at bits would cause the correctable error threshold to be reached relatively quickly but are
only reported if interrupts are enabled.
Use MBIST to determine exact location of the bad bit.
Because ICCM single-bit errors on fetches are not in-line corrected, a stuck-at bit may cause the

(0]

(o]
(o]

core to hang.

3.5 Core Error Counter/Threshold Registers

A summary of platform-specific core error counter/threshold control/status registers in CSR space:

* |-Cache Error Counter/Threshold Register (micect) (see Section 3.5.1)
* ICCM Correctable Error Counter/Threshold Register (miccmect) (see Section 3.5.2)
< DCCM Correctable Error Counter/Threshold Register (mdccmect) (see Section 3.5.3)

All read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

2 For load/store accesses, the corrected data is written back to the DCCM and counted only if the load/store instruction retires (i.e.,

access is non-speculative and has no exception).

% For non-speculative accesses only.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

22 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

3.5.1 I-Cache Error Counter/Threshold Register (micect)

The micect register holds the I-cache error counter and its threshold. The count field of themicect register is
incremented, if a parity/ECC error is detected on any of the cache line tags of the set or the instructions fetched from
the I-cache. The thresh field of the micect register holds a pointer to a bit position of the count field. If the selected

bit of the count field is ‘1", a correctable error local interrupt (see Section 2.7.2) is signaled.

Hardware increments the count field on a detected error. Firmware can non-destructively read the current count and
thresh values or write to both these fields (e.g., to change the threshold and reset the counter).

Note: The counter may overflow if not serviced and reset by firmware.

Note: The correctable error local interrupt is not latched (i.e., “sticky”), but it stays pending for 2"esh errors. If the
error rate is high and the threshold is set to a low value, the interrupt may be missed but the counter value is not lost.
When firmware resets the counter, the correctable error local interrupt condition is cleared.

Note: The micect register is instantiated, accessible, and has the same functional behavior even if the core is built
without an I-cache.

This register is mapped to the non-standard read/write CSR address space.

Table 3-3 I-Cache Error CounteriThreshold Register (micect, at CSR 0x7F0)

Field Bits Description Access | Reset

thresh 31:27 | I-cache parity/ECC error threshold: R/W 0
0..26: Value i selects countfi] bit
27..31: Invalid (when written, mapped by hardware to 26)

count 26:0 Counter incremented if I-cache parity/ECC error(s) detected. R/W 0
If countfthresh] is ‘1’, signal correctable error local interrupt (see Section
2.7.2).

3.5.2 ICCM Correctable Error Counter/Threshold Register (miccmect)

The miccmect register holds the ICCM correctable error counter and its threshold. The count field of themiccmect
register is incremented, if a correctable ECC error is detected on either an instruction fetch or a DMA read from the
ICCM. The thresh field of the miccmect register holds a pointer to a bit position of the count field. If the selected bit
of the count field is ‘1’, a correctable error local interrupt (see Section 2.7.2) is signaled.

Hardware increments the count field on a detected single-bit error. Firmware can non-destructively read the current
count and thresh values or write to both these fields (e.g., to change the threshold and reset the counter).

Note: The counter may overflow if not serviced and reset by firmware.

Note: The correctable error local interrupt is not latched (i.e., “sticky”), but it stays pending for 2esh errors. If the
error rate is high and the threshold is set to a low value, the interrupt may be missed but the counter value is not lost.
When firmware resets the counter, the correctable error local interrupt condition is cleared.

Note: DMA accesses while in power management Sleep (pmu/fw-halt) or debug halt (db-halt) state may encounter
ICCM single-bit errors. Correctable errors are counted in themiccmect error counter irrespective of the core's
power state.

Note: The miccmect register is instantiated, accessible, and has the same functional behavior even if the core is
built without an ICCM.

This register is mapped to the non-standard read/write CSR address space.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 23 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Table 3-4 ICCM Correctable Error Counter/Threshold Register (miccmect, at CSR 0x7F1)

Field Bits Description Access | Reset

thresh 31:27 | ICCM correctable ECC error threshold: R/W 0
0..26: Value i selects countfi] bit
27..31: Invalid (when written, mapped by hardware to 26)

count 26:0 Counter incremented for each detected ICCM correctable ECC error. R/W 0

If countfthresh] is ‘1’, signal correctable error local interrupt (see Section
2.7.2).

3.5.3 DCCM Correctable Error Counter/Threshold Register (mdccmect)

The mdccmect register holds the DCCM correctable error counter and its threshold. The count field of the
mdccmect register is incremented, if a correctable ECC error is detected on either a retired load/store instruction or a
DMA read access to the DCCM. The thresh field of the mdccmect register holds a pointer to a bit position of the
count field. If the selected bit of the count field is ‘1’, a correctable error local interrupt (see Section 2.7.2) is signaled.

Hardware increments the count field on a detected single-bit error for a retired load or store instruction (i.e., a non-
speculative access with no exception) or a DMA read. Firmware can non-destructively read the current count and
thresh values or write to both these fields (e.g., to change the threshold and reset the counter).

Note: The counter may overflow if not serviced and reset by firmware.

Note: The correctable error local interrupt is not latched (i.e., “sticky”), but it stays pending for 2esh errors. If the
error rate is high and the threshold is set to a low value, the interrupt may be missed but the counter value is not lost.
When firmware resets the counter, the correctable error local interrupt condition is cleared.

Note: DMA accesses while in power management Sleep (pmu/fw-halt) or debug halt (db-halt) state may encounter
DCCM single-bit errors. Correctable errors are counted in themdccmect error counter irrespective of the core's
power state.

Note: The mdccmect register is instantiated, accessible, and has the same functional behavior even if the core is
built without a DCCM.

This register is mapped to the non-standard read/write CSR address space.

Table 3-5 DCCM Correctable Error Counter/Threshold Register (mdccmect, at CSR 0x7F2)

Field Bits Description Access | Reset

thresh 31:27 | DCCM correctable ECC error threshold: R/W 0
0..26: Value i selects countfi] bit
27..31: Invalid (when written, mapped by hardware to 26)

count 26:0 Counter incremented for each detected DCCM correctable ECC error. R/W 0

If countfthresh] is ‘1’, signal correctable error local interrupt (see Section
2.7.2).

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 24 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

4 Internal Timers

This chapter describes the internal timer feature of the VeeR EHL1 core.

4.1 Features

The VeeR EH1's internal timer features are:

« Two independently controlled 32-bit timers
o Dedicated counter
o Dedicated bound
o Dedicated control to enable/disable incrementing generally, during power management Sleep, and
while executing PAUSE
o Enable/disable local interrupts (in standard RISC-V mie register)

4.2 Description

The VeeR EH1 core implements two internal timers. The mitcnt® and mitcnt1l registers (see Section 4.4.1) are
32-bit unsigned counters. Each counter also has a corresponding 32-bit unsigned bound register (i.e.,mitb0 and
mitb1l, see Section 4.4.2) and control register (i.e.,mitct 10 and mitct 11, see Section 4.4.3).

All registers are cleared at reset unless otherwise noted. After reset, the counters start incrementing the next clock
cycle if the increment conditions are met. All registers can be read as well as written at any time. Themitcnto/1
and mitb0/1 registers may be written to any 32-bit value. If the conditions to increment are met, the corresponding
counter mitcnt@/1 increments every clock cycle.

For each timer, a local interrupt (see Section 4.3) is triggered when that counter is at or above its bound. When a
counter is at or above its bound, it gets cleared the next clock cycle (i.e., the interrupt condition is not sticky).

Note: If the core is in Debug Mode and being single-stepped, it may take multiple clock cycles to execute a single
instruction. If the conditions to increment are met, the counter increments for every clock cycle it takes to execute a
single instruction. Therefore, every executed single-stepped instruction in Debug Mode may result in multiple counter
increments.

Note: If the core is in the Debug Mode’s Halted (i.e., db-halt) state, an internal timer interrupt does not transition the
core back to the Active (i.e., Running) state.

4.3 Internal Timer Local Interrupts

Local-to-the-core interrupts for internal timer 0 and 1 have pending® (mitip0/1) and enable (mitie0/1) bits in bit
positions 29 (for internal timer 0) and 28 (for internal timer 1) of the standard RISC-Vmip (see Table 11-2) and mie
(see Table 11-1) registers, respectively. The priority is lower than the RISC-V External, Software, and Timer
interrupts (see Table 13-1). The internal timer 0 and 1 local interrupts have anmcause value of 0x8000_001D (for
internal timer 0) and 0x8000_001C (for internal timer 1) (see Table 11-3).

Note: If both internal timer interrupts occur in the same cycle, internal timer O’s interrupt has higher priority than
internal timer 1's interrupt.

Note: A common interrupt service routine may be used for both interrupts. Themcause register value differentiates
the two local interrupts.

4.4 Control/Status Registers

A summary of platform-specific internal timer control/status registers in CSR space:

« Internal Timer Counter 0/ 1 Register (mitcnt0/1) (see Section 4.4.1)
* Internal Timer Bound 0 / 1 Register (mitb0/1) (see Section 4.4.2)

% Since internal timer interrupts are not latched (i.e., not “sticky”) and these local interrupts are only signaled for one core clock
cycle, it is unlikely that they are detected by firmware in themip register.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 25 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

* Internal Timer Control 0/ 1 Register (mitctl0/1) (see Section 4.4.3)

All reserved and unused bits in these control/status registers must be hardwired to ‘0’. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

4.4.1 Internal Timer Counter 0/ 1 Register (mitcnt0/1)
The mitcnt@ and mitcntl registers are the counters of the internal timer O and 1, respectively.

The conditions to increment a counter are:

e The enable bit in the correspondingmitct10/1 register is ‘1’

* ifthe core is in Sleep (i.e., pmu/fw-halt) state, the halt_en bit in the correspondingmitct10/1 register is ‘1’,
« if the core is paused, the pause_en bit in the correspondingmitct10/1 register is ‘1’, and

* the core is not in Debug Mode, except while executing a single-stepped instruction.

A counter is cleared if its value is greater than or equal to its correspondingmitb@/1 register.

Note: If a write to the mitcnt@/1 register is committed in the same clock cycle as the timer interrupt condition is met,
the internal timer local interrupt is triggered, if enabled, and the counter is cleared. In this case, the counter is not set
to the written value.

These registers are mapped to the non-standard read/write CSR address space.

Table 4-1 Internal Timer Counter 0 / 1 Register (mitcnt0/1, at CSR 0x7D2 | 0x7D5)

Field Bits Description Access | Reset

count 31:0 Counter R/W 0

4.4.2 Internal Timer Bound 0 / 1 Register (mith0/1)
The mitb0 and mitb1 registers hold the upper bounds of the internal timer 0 and 1, respectively.

These registers are mapped to the non-standard read/write CSR address space.

Table 4-2 Internal Timer Bound 0 / 1 Register (mitb0/1, at CSR 0x7D3 / 0x7D6)

Field Bits Description Access | Reset

bound 31:0 Bound R/W OXFFFF_FFFF

4.4.3 Internal Timer Control 0 / 1 Register (mitctl0/1)
The mitct 10 and mitct 11 registers provide the control bits of the internal timer O and 1, respectively.

These registers are mapped to the non-standard read/write CSR address space.

Table 4-3 Internal Timer Control 0 / 1 Register (mitctl0/1, at CSR 0x7D4 | 0x7D7)

Field Bits Description Access | Reset
Reserved 31:3 Reserved R 0
pause_en | 2 Enable/disable incrementing timer counter while executing PAUSE: R/W 0

0: Disable incrementing (default)
1: Enable incrementing

Note: If ‘1’ and the core is pausing (see Section 5.5.2), an internal timer
interrupt terminates PAUSE and regular execution is resumed.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 26 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Field Bits Description Access | Reset
halt_en 1 Enable/disable incrementing timer counter while in Sleep (i.e., pmu/fw- R/W 0
halt) state:

0: Disable incrementing (default)
1: Enable incrementing
Note: If ‘1’ and the core is in Sleep (i.e., pmu/fw-halt) state, an internal

timer interrupt transitions the core back to the Active (i.e., Running)
state and regular execution is resumed.

enable 0 Enable/disable incrementing timer counter: R/W 1
0: Disable incrementing
1: Enable incrementing (default)

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 27 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

5 Power Management and Multi-Core Debug Control

This chapter specifies the power management and multi-core debug control functionality provided or supported by the
VeeR EH1 core. Also documented in this chapter is how debug may interfere with core power management.

5.1 Features

VeeR EH1 supports and provides the following power management and multi-core debug control features:

* Support for three system-level power states: Active (C0), Sleep (C3), Power Off (C6)

« Firmware-initiated halt to enter sleep state

* Fine-grain clock gating in active state

« Enhanced clock gating in sleep state

* Halt/run control interface to/from SoC Power Management Unit (PMU)

« Signal indicating that core is halted

e Halt/run control interface to/from SoC debug Multi-Processor Controller (MPC) to enable cross-triggering in
multi-core chips

* Signals indicating that core is in Debug Mode and core hit a breakpoint

* PAUSE feature to help avoid firmware spinning

5.2 Core Control Interfaces

VeeR EH1 provides two control interfaces, one for power management and one for multi-core debug control, which
enable the core to be controlled by other SoC blocks.

5.2.1 Power Management

The power management interface enables an SoC-based Power Management Unit (PMU) to:

« Halt (i.e., enter low-power sleep state) or restart (i.e., resume execution) the core, and
« get an indication when the core has gracefully entered the sleep state.

The power management interface signals are described in Table 5-3.

5.2.2 Multi-Core Debug Control
The multi-core debug control interface enables an SoC-based Multi-Processor Controller (MPC) to:

« Control the reset state of the core (i.e., either start executing or enter Debug Mode),

« halt (i.e., enter Debug Mode) or restart (i.e., resume execution) the core,

e get an indication when the core is in Debug Mode, and

« cross-trigger other cores when this core has entered Debug Mode due to a software or a hardware
breakpoint.

The multi-core debug control interface signals are described in Table 5-4.

5.3 Power States

From a system'’s perspective, the core may be placed in one of three power states: Active (C0), Sleep (C3), and
Power Off (C6). Active and Sleep states require hardware support from the core, but in the Power Off state the core
is power-gated so no special hardware support is needed.

Figure 5-1 depicts and Table 5-2 describes the core activity states as well as the events to transition between them.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 28 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

» Without Single Step action, stay in Running
» With Single Step action, execute one
instruction then return to Halted (db-halt)

cpu_halt_status = low cpu_halt_status =/low

debug_mode_status = high

)y

y

(see Debug Resume

Running - Requests table below) Halted
Active (CO) Debug Mode (db-halt)
(Core Debug Halt Request or Active (CO)

Core Debug Single Step or
Core Debug Breakpoint w/Halt or
Core Debug Trigger w/Halt or

Core

MPC Debug Halt Request)
& Debug Halt
Core Quiesced (PMU Run Request or Request
highest-priority ext. interrupt or or
timer interrupt or MPC
internal timer interrupt or Debug Halt
NMI) ~ Request
&
No Core Debug Halt Request A c
& / ore
No MPC Debug Halt Request Halted ngug H?It
] \ eques
- (pmu/fw-halt) or
- S| c3 No MPC
(PMU Halt Request or FW-initiated Halt) \ eep () / Reset Run
& Request
No Core Debug Halt Action - PM U
No MPC Debug Halt Request Halt Request
& cpu_halt_status = high &
Core Quiesced nga(lztolgit?febslig

No PMU Halt Request
&
No Core Debug Halt Request
&

MPC Reset Run Request

Figure 5-1 VeeR EH1 Core Activity States

Note: ‘Core Quiesced’ implies that no new instructions are executed and all outstanding core-initiated bus
transactions are completed (i.e., the read buffer and the write buffer are empty, and all outstanding I-cache misses
are finished). Note that the store queue and the DMA FIFO might not be empty due to on-going DMA transactions.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 29 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Table 5-1 Debug Resume Requests

Core-Internal State

Halted Halted Comments

Debug Debug MPC MPC .
(This (Next
Resume Halt Halt Run Cycle) Cycle)
0 0 0 0 0 0 No request for Debug Mode entry
No action required from core
0 0 0 1 . T)
(requires coordination outside of core)
Waiting for MPC Run
0 0 L 0 L L (core remains in ‘db-halt’ state)
0 0 1 1 1 0 MPC Run Ack
Waiting for Debug Resume
0 L 0 0 L L (core remains in ‘db-halt’ state)
0 1 0 1 No action required from core

(requires coordination outside of core)

Waiting for both MPC Run and
0 1 1 0 1 1 Debug Resume
(core remains in ‘db-halt’ state)

Waiting for Debug Resume

0 1 1 1 1 1 (core remains in ‘db-halt’ state)
No action required from core
1 0 0 0 . T)
(requires coordination outside of core)
No action required from core
1 0 0 1 X o)
(requires coordination outside of core)
No action required from core
1 0 1 0 . T)
(requires coordination outside of core)
No action required from core
1 0 1 1 . L)
(requires coordination outside of core)
1 1 0 0 1 0 Debug Resume Ack
No action required from core
1 1 0 1 ; L .
(requires coordination outside of core)
Waiting for MPC Run
L L L 0 L L (core remains in ‘db-halt’ state)
1 1 1 1 1 0 Debug Resume Ack and MPC Run Ack

Note: While in ‘db-halt’ state, hardware ignores Debug Resume requests if the corresponding ‘Debug Halt’ state is
not ‘1’. Likewise, hardware ignores MPC Debug Run requests if the corresponding ‘MPC Halt’ state is not ‘1’.

Note: The core-internal state bits are cleared upon exiting Debug Mode.

Note: In the time period between an MPC Debug Halt request and an MPC Debug Run request, a core debug single-
step action is stalled but stays pending.

Note: Even if the core is already in Debug Mode due to a previous MPC Debug Halt request, a core debugger must
initiate a debug halt (i.e., Core Debug Halt request) before it may start issuing other debug commands. However, if
Debug Mode was entered due to a core debug breakpoint, a Core Debug Halt request is not required.

Note: An MPC Debug Halt request may only be signaled when the core is either not in Debug Mode or is already in
Debug Mode due to a previous Core Debug Halt request or a debug breakpoint or trigger. Also, an MPC Debug Run
request may only be signaled when the core is in Debug Mode due to either a previous MPC Debug Halt request, a

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 30 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

previous Core Debug Halt request, or a debug breakpoint or trigger. Issuing more than one MPC Debug Halt
requests in succession or more than one MPC Debug Run requests in succession is a protocol violation.

Table 5-2 Core Activity States

Active (C0) Sleep (C3)

Halted

Running

db-halt

pmu/fw-halt

State
Description

Core operating normally

Core halted in Debug Mode

Core halted by PMU halt
request or by core firmware-
initiated halt

Power Savings

Fine-grain clock gating
integrated in core minimizes
power consumption during
regular operation

Fine-grain clock gating

Enhanced clock gating in
addition to fine-grain clock
gating

DMA Access

DMA accesses allowed

State Indication

e cpu_halt_statusis low

» debug_mode_status is
low (except for Core Debug
Resume request with
Single Step action)

e cpu_halt_statusis low

» debug_mode_status is
high

* cpu_halt_statusis high

» debug_mode_status is
low

Internal Timer
Counters

mitcnt®/1 incremented
every core clock cycle

(also during execution of
instructions while single-
stepping in Debug Mode)

mitcnt®/1 not incremented

Depends on halt_en bit in
mitct10/1 registers:

0:mitcnt®/1 not
incremented

1:mitent@/1 incremented
every core clock cycle

Machine Cycle
Performance-
Monitoring
Counter

mcyc le incremented every
core clock cycle

Depends on stopcount bit of
dcsr register (see Section
9.1.3.5):
0: mcyc le incremented
every core clock cycle

1: mcycle not incremented

mcyc le not incremented

5.4 Power Control

The priority order of simultaneous halt requests is as follows:

1. Any core debug halt action:
a. Core debug halt request
b. Core debug single step
c. Core debug breakpoint
d. Core debug trigger

or MPC debug halt request

2. PMU halt request or core firmware-initiated halt

If the PMU sends a halt request while the core is in Debug Mode, the core disregards the halt request. If the PMU’s
halt request is still pending when the core exits Debug Mode, the request is honored at that time. Similarly, core
firmware can't initiate a halt while in Debug Mode. However, it is not possible for a core firmware-initiated halt
request to be pending when the core exits Debug Mode.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

31 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Important Note: There are two separate sources of debug operations: the core itself which conforms to the standard
RISC-V Debug specification [3], and the Multi-Processor Controller (MPC) block which provides multi-core debug
capabilities. These two sources may interfere with each other and need to be carefully coordinated on a higher level
outside the core. Unintended behavior might occur if simultaneous debug operations from these two sources are not
synchronized (e.g., MPC requesting a resume during the execution of an abstract command initiated by the debugger
attached to the JTAG port).

5.4.1 Debug Mode
Debug Mode must be able to seize control of the core. Therefore, debug has higher priority than power control.
Debug Mode is entered under any of the following conditions:

e Core debug halt request

« Core debug single step

¢ Core debug breakpoint with halt action

* Core debug trigger with halt action

¢ Multi-core debug halt request (from MPC)

Debug Mode is exited with:

e Core debug resume request with no single step action
e Multi-core debug run request (from MPC)

The state ‘db-halt’ is the only halt state allowed while in Debug Mode.

5.4.1.1 Single Stepping
A few notes about executing single-stepped instructions:

« Executing instructions which attempt to exit Debug Mode are ignored (e.g., writing to thempmc register
requesting to halt the core does not transition the core to the pmu/fw-halt state).

* Accesses to D-mode registers are illegal, even though the core is in Debug Mode.

« A core debug single-step action initiated in the time period between an MPC Debug Halt request and an
MPC Debug Run request is stalled but stays pending until an MPC Debug Run request is issued.

5.4.2 Core Power and Multi-Core Debug Control and Status Signals

Figure 5-2 depicts the power and multi-core debug control and status signals which connect the VeeR EHL1 core to
the PMU and MPC blocks. Signals from the PMU and MPC to the core are asynchronous and must be synchronized
to the core clock domain. Similarly, signals from the core are asynchronous to the PMU and MPC clock domains and
must be synchronized to the PMU’s or MPC'’s clock, respectively.

Note: The synchronizer of the cpu_run_req signal may not be clock-gated. Otherwise, the core may not be woken
up again via the PMU interface.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 32 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

PMU Power Control MPC Debug Control
Signals Signals

mpc_debug_halt_req

debug_halt_ack
mpc_debug_halt ack _|

cpu_halt_req
cpu_halt_ack
mpc_debug_run_req
VeeR EH1 mpc_debug_run_ack
cpu_run_req Core -
cpu_run_ack

Complex mpc_reset_run_req

cpu_halt_status

debug_mode_status

debug_brkpt_status >

Figure 5-2 VeeR EH1 Power and Multi-Core Debug Control and Status Signals

5.4.2.1 Power Control and Status Signals

There are three types of signals between the Power Management Unit and the VeeR EH1 core, as described in
Table 5-3. All signals are active-high.

Table 5-3 VeeR EH1 Power Control and Status Signals

Signal(s) Description
cpu_halt_reqand Full handshake to request the core to halt.
cpu_halt_ack The PMU requests the core to halt (i.e., enter pmu/fw-halt) by asserting the

cpu_halt_reqsignal. The core is quiesced before halting. The core then asserts the
cpu_halt_ack signal. When the PMU detects the asserted cpu_halt_ack signal, it
deasserts the cpu_halt_reqsignal. Finally, when the core detects the deasserted
cpu_halt_req signal, it deasserts the cpu_halt_ack signal.

Note: cpu_halt_req must be tied to ‘0’ if PMU interface is not used.

cpu_run_req and Full handshake to request the core to run.

cpu_run_ack The PMU requests the core to run by asserting the cpu_run_req signal. The core
exits the halt state and starts execution again. The core then asserts the
cpu_run_ack signal. When the PMU detects the asserted cpu_run_ack signal, it
deasserts the cpu_run_req signal. Finally, when the core detects the deasserted
cpu_run_req signal, it deasserts the cpu_run_ack signal.

Note: cpu_run_req must be tied to ‘0’ if PMU interface is not used.

cpu_halt_status Indication from the core to the PMU that the core has been gracefully halted.

Note: Power control protocol violations (e.g., simultaneously sending a run and a halt request) may lead to
unexpected behavior.

Note: If the core is already in the activity state being requested (i.e., the core is already either in the pmu/fw-halt state
and cpu_halt_reqis asserted, or in the Running state and cpu_run_req is asserted), an acknowledgement may
not be signaled (i.e., the cpu_halt_ack or cpu_run_ack signal, respectively, may not be asserted). In general,

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 33 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

requesting a state the core is already in should be avoided, and recovering from this condition needs to be handled at
the SoC level.

Figure 5-3 depicts conceptual timing diagrams of a halt and a run request. Note that entering Debug Mode is an
asynchronous event relative to power control commands sent by the PMU. Debug Mode has higher priority and can
interrupt and override PMU requests.

PMU Halt Request:

cpu_halt_req / \\
cpu_halt_ack // N\
cpu_halt_status //
cpu_run_req
cpu_run_ack
quiesce core >

PMU Run Request:

cpu_halt_req
cpu_halt_ack
cpu_halt_status \\
cpu_run_req // \\
cpu_run_ack // \\
start execution

Figure 5-3 VeeR EH1 Power Control and Status Interface Timing Diagrams

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 34 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

5.4.2.2 Multi-Core Debug Control and Status Signals

There are five types of signals between the Multi-Processor Controller and the VeeR EH1 core, as described in
Table 5-4. All signals are active-high.

Table 5-4 VeeR EH1 Multi-Core Debug Control and Status Signals

Signal(s) Description

mpc_debug_halt_req | Full handshake to request the core to debug halt.

and The MPC requests the core to halt (i.e., enter ‘db-halt’) by asserting the
mpc_debug_halt_ack mpc_debug_halt_req signal. The core is quiesced before halting. The core then
asserts the mpc_debug_halt_ack signal. When the MPC detects the asserted
mpc_debug_halt_ack signal, it deasserts thempc_debug_halt_req signal.
Finally, when the core detects the deasserted mpc_debug_halt_req signal, it
deasserts the mpc_debug_halt_ack signal.

For as long as the mpc_debug_halt_req signal is asserted, the core must assert and
hold the mpc_debug_halt_ack signal whether it was already in ‘db-halt’ or just
transitioned into ‘db-halt’ state.

Note: The cause field of the core’s dcsr register (see Section 9.1.3.5) is set to 3 (i.e.,
the same value as a debugger-requested entry to Debug Mode due to a Core Debug
Halt request). Similarly, the dpc register (see Section 9.1.3.6) is updated with the
address of the next instruction to be executed at the time that Debug Mode was
entered.

Note: Signaling more than one MPC Debug Halt request in succession is a protocol
violation.

Note: mpc_debug_halt_req must be tied to ‘0’ if MPC interface is not used.

mpc_debug_run_req | Full handshake to request the core to run.

and deb K The MPC requests the core to run by asserting thempc_debug_run_req signal. The
mpc_debug_run_ac core exits the halt state and starts execution again. The core then asserts the
mpc_debug_run_ack signal. When the MPC detects the asserted
mpc_debug_run_ack signal, it deasserts the mpc_debug_run_req signal. Finally,
when the core detects the deasserted mpc_debug_run_req signal, it deasserts the
mpc_debug_run_ack signal.

For as long as the mpc_debug_run_req signal is asserted, the core must assert and
hold the mpc_debug_run_ack signal whether it was already in ‘Running’ or after
transitioning into ‘Running’ state.

Note: The core remains in the ‘db-halt’ state if a core debug request is also still active.

Note: Signaling more than one MPC Debug Run request in succession is a protocol
violation.

Note: mpc_debug_run_req must be tied to ‘0’ if MPC interface is not used.

mpc_reset_run_req Core start state control out of reset:
1: Normal Mode (‘Running’ or ‘pmu/fw-halt’ state)
0: Debug Mode halted (‘db-halt’ state)

Note: The core complex does not implement a synchronizer for this signal because the
timing of the first clock is critical. It must be synchronized to the core clock domain
outside the core in the SoC.

Note: mpc_reset_run_req must be tied to ‘1’ if MPC interface is not used.

debug_mode_status Indication from the core to the MPC that it is currently transitioning to or already in
Debug Mode.

debug_brkpt_status | Indication from the core to the MPC that a software (i.e., ebreak instruction) or
hardware (i.e., trigger hit) breakpoint has been triggered in the core. The breakpoint
signal is only asserted for breakpoints and triggers with debug halt action. The signal is
deasserted on exiting Debug Mode.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 350f 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Note: Multi-core debug control protocol violations (e.g., simultaneously sending a run and a halt request) may lead to
unexpected behavior.

Note: If the core is either not in the db-halt state (i.e.,debug_mode_status indication is not asserted) or is already
in the db-halt state due to a previous Core Debug Halt request or a debug breakpoint or trigger (i.e.,
debug_mode_status indication is already asserted), asserting thempc_debug_halt_req signal is allowed and
acknowledged with the assertion of the mpc_debug_halt_ack signal. Also, asserting thempc_debug_run_req
signal is only allowed if the core is in the db-halt state (i.e.,debug_mode_status indication is asserted), but the
core asserts the mpc_debug_run_ack signal only after the cpu_run_req signal on the PMU interface has been
asserted as well, if a PMU Halt request was still pending.

Note: If the MPC is requesting the core to enter Debug Mode out of reset by activating thempc_reset_run_req
signal, the mpc_debug_run_req signal may not be asserted until the core is out of reset and has entered Debug
Mode. Violating this rule may lead to unexpected core behavior.

Note: If Debug Mode is entered at reset by setting thempc_reset_run_req signal to ‘0’, only a run request issued
on the mpc_debug_run_reg/ack interface allows the core to exit Debug Mode. A core debug resume request
issued by the debugger does not transition the core out of Debug Mode.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 36 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Figure 5-4 depicts conceptual timing diagrams of a halt and a run request.

MPC Halt Request:

mpc_debug_halt_req / AN

mpc_debug_halt_ack // N\

1
debug_mode_status 7

mpc_debug_run_req

mpc_debug_run_ack

>

guiesce core

Y if core not already quiesced and in Debug Mode due to earlier Core Debug Halt request (i.e., in active core debug session)

MPC Run Request:

mpc_debug_halt_req

mpc_debug_halt_ack

debug_mode_status \\
mpc_debug_run_req // \\
mpc_debug_run_ack // \\
: >|
wait for | start
Core Debug execution
Resume
request?

2 if in active core debug session

Figure 5-4 VeeR EH1 Multi-Core Debug Control and Status Interface Timing Diagrams

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 37 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Figure 5-5 depicts conceptual timing diagrams of the breakpoint indication.

Breakpoint Signal Assertion:

debug_brkpt_status /

debug_mode_status Y

quiesce core

Y if core not already quiesced and in Debug Mode due to earlier Core Debug Halt request (i.e., in active core debug session)

Breakpoint Signal Deassertion:

debug_brkpt_status \

debug_mode_status \

Figure 5-5 VeeR EH1 Breakpoint Indication Timing Diagrams

5.4.3 Debug Scenarios

The following mixed core debug and MPC debug scenarios are supported by the core:

5.4.3.1
1.

Scenario 1: Core Halt » MPC Halt » MPC Run = Core Resume

Core debugger asserts a Debug Halt request which results in the core transitioning into Debug Halt state
(db-halt).

In the system, another processor hits a breakpoint. The MPC signals a Debug Halt request to all processors
to halt.

Core acknowledges this Debug Halt request as it is already in Debug Halt state (db-halt).

MPC signals a Debug Run request, but core is in the middle of a core debugger operation (e.g., an Abstract
Command-based access) which requires it to remain in Debug Halt state.

Core completes debugger operation and waits for Core Debug Resume request from the core debugger.
When core debugger sends a Debug Resume request, the core then transitions to the Running state and
deasserts the debug_mode_status signal.

Finally, core acknowledges MPC Debug Run request.

Scenario 2: Core Halt » MPC Halt » Core Resume - MPC Run

Core debugger asserts a Debug Halt request which results in the core transitioning into Debug Halt state
(db-halt).

In the system, another processor hits a breakpoint. The MPC signals Debug Halt request to all processors
to halt.

Core acknowledges this Debug Halt request as it is already in Debug Halt state (db-halt).

Core debugger completes its operations and sends a Debug Resume request to the core.

Core remains in Halted state as MPC has not yet asserted its Debug Run request. The
debug_mode_status signal remains asserted.

When MPC signals a Debug Run request, the core then transitions to the Running state and deasserts the
debug_mode_status signal.

Finally, core acknowledges MPC Debug Run request.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 38 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

5.4.3.3 Scenario 3: MPC Halt =» Core Halt » Core Resume - MPC Run

MPC asserts a Debug Halt request which results in the core transitioning into Debug Halt state (db-halt).
Core acknowledges this Debug Halt request.

Core debugger signals a Debug Halt request to the core. Core is already in Debug Halt state (db-halt).
Core debugger completes its operations and sends a Debug Resume request to the core.

Core remains in Halted state as MPC has not yet asserted its Debug Run request. The
debug_mode_status signal remains asserted.

When MPC signals a Debug Run request, the core then transitions to the Running state and deasserts the
debug_mode_status signal.

6. Finally, core acknowledges MPC Debug Run request.

©prpODOE

o

5.4.3.4 Scenario 4: MPC Halt =» Core Halt » MPC Run = Core Resume

MPC asserts a Debug Halt request which results in the core transitioning into Debug Halt state (db-halt).
Core acknowledges this Debug Halt request.

Core debugger signals a Debug Halt request to the core. Core is already in Debug Halt state (db-halt).
MPC signals a Debug Run request, but core debugger operations are still in progress. Core remains in
Halted state. The debug_mode_status signal remains asserted.

Core debugger completes operations and signals a Debug Resume request to the core.

The core then transitions to the Running state and deasserts thedebug_mode_status signal.

7. Finally, core acknowledges MPC Debug Run request.

PowbdpE

5.
6.

5.4.3.5 Summary

For the core to exit out of Debug Halt state (db-halt) in cases where it has received debug halt requests from both
core debugger and MPC, it must receive debug run requests from both the core debugger as well as the MPC,
irrespective of the order in which debug halt requests came from both sources. Until then, the core remains halted
and the debug_mode_status signal remains asserted.

5.4.4 Core Wake-Up Events
When not in Debug Mode (i.e., the core is in pmu/fw-halt state), the core is woken up on several events:

* PMU run request

* Highest-priority external interrupt (nhwakeup signal from PIC) and core interrupts are enabled
* Timer interrupt

* Internal timer interrupt

* Non-maskable interrupt (NMI) (nmi_int signal)

The PIC is part of the core logic and the mhwakeup signal is connected directly inside the core. The internal timers
are part of the core and internally connected as well. The standard RISC-V timer interrupt and NMI signals are
external to the core and originate in the SoC. If desired, these signals can be routed through the PMU and further
qualified there.

5.4.5 Core Firmware-Initiated Halt
The firmware running on the core may also initiate a halt by writing a ‘1’ to the halt field of thempmc register (see
Section 5.5.1). The core is quiesced before indicating that it has gracefully halted.

5.4.6 DMA Operations While Halted
When the core is halted in the ‘pmu/fw-halt’ or the ‘db-halt’ state, DMA operations are supported.

5.4.7 External Interrupts While Halted

All non-highest-priority external interrupts are temporarily ignored while halted. Only external interrupts which activate
the mhwakeup signal (see Section 6.5.2, Steps 13 and 14) are honored, if the core is enabled to service external
interrupts (i.e., the mie bit of the mstatus and the meie bit of the mie standard RISC-V registers are both set,
otherwise the core remains in the ‘pmu/fw-halt’ state). External interrupts which are still pending and have a
sufficiently high priority to be signaled to the core are serviced once the core is back in the Running state.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 39 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

5.5 Control/Status Registers

A summary of platform-specific control/status registers in CSR space:

*« Power Management Control Register (mpmc) (see Section 5.5.1)
* Core Pause Control Register (mcpc) (see Section 5.5.2)

All reserved and unused bits in these control/status registers must be hardwired to ‘0’. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

5.5.1 Power Management Control Register (mpmc)

The mpmc register provides core power management control functionality. It allows the firmware running on the core
to initiate a transition to the Halted (pmu/fw-halt) state. While entering the Halted state, interrupts may optionally be
enabled atomically.

The halt field of the mpmc register has W1RO0 (Write 1, Read 0) behavior, as also indicated in the ‘Access’ column.

Note: Writing a ‘1’ to the haltie field of the mpmc register without also setting the halt field has no immediate effect on
the mie bit of the mstatus register. However, the haltie field of the mpmc register is updated accordingly.

Note: Once the mie bit of the mstatus register is set via the haltie field of the mpmc register, it remains set until other
operations clear it. Exiting the Halted (pmu/fw-halt) state does not clear the mie bit of themstatus register set by
entering the Halted state.

Note: In Debug Mode, writing (i.e., setting or clearing) haltie has no effect on themstatus register's mie bit since the
core does not transition to the Halted (pmu/fw-halt) state.

This register is mapped to the non-standard read/write CSR address space.

Table 5-5 Power Management Control Register (mpmc, at CSR 0x7C6)

Field Bits Description Access | Reset
Reserved 31:2 Reserved R 0
haltie 1 Control interrupt enable (i.e., mie bit of mstatus register) when R/W 1

transitioning to Halted (pmu/fw-halt) state by setting halt bit below:
0: Don't change mie bit of mstatus register
1: Set mie bit of mstatus register (i.e., atomically enable interrupts)

halt 0 Initiate core halt (i.e., transition to Halted (pmu/fw-halt) state) RO/W1 | O
Note: Write ignored if in Debug Mode

5.5.2 Core Pause Control Register (mcpc)

The mcpc register supports functions to temporarily stop the core from executing instructions. This helps to save
core power since busy-waiting loops can be avoided in the firmware.

PAUSE stops the core from executing instructions for a specified number® of clock ticks or until an interrupt is
received.

Note: PAUSE is a long-latency, interruptible instruction and does not change the core’s activity state (i.e., the core
remains in the Running state). Therefore, even though this function may reduce core power, it is not part of core
power management.

% The field width provided by the mcpc register allows to pause execution for about 4 seconds at a 1 GHz core clock.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 40 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Note: PAUSE has a skid of several cycles. Therefore, instruction execution might not be stopped for precisely the
number of cycles specified in the pause field of themcpc register. However, this is acceptable for the intended use
case of this function.

Note: Depending on the pause_en bit of themitct 10/1 registers, the internal timers might be incremented while
executing PAUSE. If an internal timer interrupt is signaled, PAUSE is terminated and normal execution resumes.

Note: If the PMU sends a halt request while PAUSE is still executing, the core enters the Halted (pmu/fw-halt) state
and the pause clock counter stops until the core is back in the Running state.

Note: WFI is another candidate for a function that stops the core temporarily. Currently, the WFI instruction is
implemented as NOP, which is a fully RISC-V-compliant option.

The pause field of the mcpc register has WARO (Write Any value, Read 0) behavior, as also indicated in the ‘Access’
column.

This register is mapped to the non-standard read/write CSR address space.

Table 5-6 Core Pause Control Register (mcpc, at CSR 0x7C2)

Field Bits Description Access | Reset

pause 31:0 Pause execution for number of core clock cycles specified RO/W 0

Note: pause is decremented by 1 for each core clock cycle. Execution
continues either when pause is 0 or any interrupt is received.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 41 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

6 External Interrupts

See Chapter 7, Platform-Level Interrupt Controller (PLIC) in [2 (PLIC)] for general information.

Note: Even though this specification is modeled to a large extent after the RISC-V PLIC (Platform-Level Interrupt
Controller) specification, this interrupt controller is associated with the core, not the platform. Therefore, the more
general term PIC (Programmable Interrupt Controller) is used.

6.1 Features

The PIC provides these core-level external interrupt features:

* Up to 255 global (core-external) interrupt sources (from 1 (highest) to 255 (lowest)) with separate enable
control for each source

e 15 priority levels (numbered 1 (lowest) to 15 (highest)), separately programmable for each interrupt source

* Programmable reverse priority order (14 (lowest) to O (highest))

* Programmable priority threshold to disable lower-priority interrupts

e Wake-up priority threshold (hardwired to highest priority level) to wake up core from power-saving (Sleep)
mode if interrupts are enabled

¢ One interrupt target (RISC-V hart M-mode context)

« Support for vectored external interrupts

e Support for interrupt chaining and nested interrupts

6.2 Naming Convention

6.2.1 Unit, Signal, and Register Naming
S suffix: Unit, signal, and register names which have an S suffix indicate an entity specific to an interrupt source.

X suffix: Register names which have an X suffix indicate a consolidated register for multiple interrupt sources.

6.2.2 Address Map Naming
Control/status register: A control/status register mapped to either the memory or the CSR address space.
Memory-mapped register: Register which is mapped to RISC-V's 32-bit memory address space.

Register in CSR address space: Register which is mapped to RISC-V's 12-bit CSR address space.
6.3 Overview of Major Functional Units

6.3.1 External Interrupt Source

All functional units on the chip which generate interrupts to be handled by the RISC-V core are referred to as external
interrupt sources. External interrupt sources indicate an interrupt request by sending an asynchronous signal to the
PIC.

6.3.2 Gateway

Each external interrupt source connects to a dedicated gateway. The gateway is responsible for synchronizing the
interrupt request to the core’s clock domain, and for converting the request signal to a common interrupt request
format (i.e., active-high and level-triggered) for the PIC. The PIC core can only handle one single interrupt request
per interrupt source at a time.

All current SoC IP interrupts are asynchronous and level-triggered. Therefore, the gateway’s only function for SoC IP
interrupts is to synchronize the request to the core clock domain. There is no state kept in the gateway.

A gateway suitable for ASIC-external interrupts must provide programmability for interrupt type (i.e., edge- vs. level-
triggered) as well as interrupt signal polarity (i.e., low-to-high vs. high-to-low transition for edge-triggered interrupts,
active-high vs. -low for level-triggered interrupts). For edge-triggered interrupts, the gateway must latch the interrupt
request in an interrupt pending (IP) flop to convert the edge- to a level-triggered interrupt signal. Firmware must clear
the IP flop while handling the interrupt.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 42 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Note: While an interrupt is disabled, spurious changes of the interrupt source input may be captured in the IP flop.
To reduce the probability of reporting spurious interrupts, firmware should clear the IP flop before reenabling
interrupts.

Implementation Note: The gateway does not implement any edge-detection logic (e.g., an edge-triggered flop) to
convert the interrupt request to a level-triggered interrupt signal (see Figure 6-3). Therefore, the interrupt request
input signal must be set to the inactive level (i.e., to ‘0’ for an active-high interrupt and to ‘1’ for an active-low interrupt)
to avoid an interrupt request being continuously reported as pending, even after the gateway'’s IP latch has been
cleared. Consequently, if the gateway of an unused interrupt request input is programmed to an “active-high”
polarity, the interrupt input signal must be tied off to ‘0. Similarly, if the polarity is programmed to “active-low”, the
interrupt input signal must be tied off to ‘1".

Note: For asynchronous interrupt sources, the pulse duration of an interrupt request must be at least two full clock
cycles of the receiving (i.e., PIC core) clock domain to guarantee it will be recognized as an interrupt request. Shorter
pulses might be dropped by the synchronizer circuit.

6.3.3 PIC Core

The PIC core’s responsibility is to evaluate all pending and enabled interrupt requests and to pick the highest-priority
request with the lowest interrupt source ID. It then compares this priority with a programmable priority threshold and,
to support nested interrupts, the priority of the interrupt handler if one is currently running. If the picked request’s
priority is higher than both thresholds, it sends an interrupt notification to the core. In addition, it compares the picked
request’s priority with the wake-up threshold (highest priority level) and sends a wake-up signal to the core, if the
priorities match. The PIC core also provides the interrupt source ID of the picked request in a status register.

Implementation Note: Different levels in the evaluation tree may be staged wherever necessary to meet timing,
provided that all signals of a request (ID, priority, etc.) are equally staged.

6.3.4 Interrupt Target
The interrupt target is a specific RISC-V hart context. For the VeeR EHL1 core, the interrupt target is the M privilege
mode of the hart.

6.4 PIC Block Diagram

Figure 6-1 depicts a high-level view of the PIC. A simple gateway for asynchronous, level-triggered interrupt sources
is shown in Figure 6-2, whereas Figure 6-3 depicts conceptually the internal functional blocks of a configurable
gateway. Figure 6-4 shows a single comparator which is the building block to form the evaluation tree logic in the
PIC core.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 43 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

External Interrupt Source 1 External Interrupt Source 2 External Interrupt Source 3 External Interrupt Source 254 External Interrupt Source 255

exintsrc_req[1]

exintsrc_req[2]

meip0. meip0. meip0. meip7. meip7.
intpend1 intpend2 intpend3 LR intpend30 intpend31
4 4 4 4 4

exintsrc_req[3] exintsrc_req[254] exintsrc_req[255]

3 Comparator E A Comparator E

A

Comparator Comparator

B Comparator

meihaj
base, claimid, 2'b0]

[] Gateway [Target PIC core [Comparator
[]Read-only CSR [1] Write-only CSR

[CJrRWCSR [R/ CSR (wicond. inversion)

Figure 6-1 PIC Block Diagram

Implementation Note: For R/W control/status registers with double-borders in Figure 6-1, the outputs of the registers
are conditionally bit-wise inverted, depending on the priority order set in the priord bit of thempiccfg register. This
is necessary to support the reverse priority order feature.

Note: The PIC logic always operates in regular priority order. When in reverse priority order mode, firmware reads
and writes the control/status registers with reverse priority order values. The values written to and read from the
control/status registers are inverted. Therefore, from the firmware’s perspective, the PIC operates in reverse priority
order.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 44 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

. Multi-stage Interrupt Request
exintsrc_req[S] for Source S

Figure 6-2 Gateway for Asynchronous, Level-triggered Interrupt Sources

. Multi-stage Interrupt Request
exintsrc_req[S] 1> . for Source S
IP bit
R

[l cateway [Jrwcsr [write-only CSR

Figure 6-3 Conceptual Block Diagram of a Configurable Gateway

Priorityg

IDe - Priority our
Priority a) IDour

IDa

Figure 6-4 Comparator

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 45 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

6.5 Theory of Operation

Note: Interrupts must be disabled (i.e., the mie bit in the standard RISC-Vmstatus register must be cleared) before
changing the standard RISC-V mtvec register or the PIC’'smeicurpl and meipt registers, or unexpected behavior
may occur.

6.5.1 Initialization

The control registers must be initialized in the following sequence:

1.
2.

3.

o

Configure the priority order by writing the priord bit of thempiccfg register.

For each configurable gateway S, set the polarity (polarity field) and type (type field) in themeigwctr 1S
register and clear the IP bit by writing to the gateway’smeigwc1rS register.

Set the base address of the external vectored interrupt address table by writing the base field of themeivt
register.

Sgt the priority level for each external interrupt source S by writing the corresponding priority field of the
meiplsS registers.

Set the priority threshold by writing prithresh field of themeipt register.

Initialize the nesting priority thresholds by writing ‘0’ (or ‘15’ for reversed priority order) to the clidpri field of
the meicidpl and the currprifield of the meicurpl registers.

Enable interrupts for the appropriate external interrupt sources by setting the inten bit of themeieS registers
for each interrupt source S.

6.5.2 Regular Operation

A step-by-step description of interrupt control and delivery:

1.

2.

a ks

10.

11.

12.
13.

The external interrupt source S signals an interrupt request to its gateway by activating the corresponding
exintsrc_req[S] signal.
The gateway synchronizes the interrupt request from the asynchronous interrupt source’s clock domain to
the PIC core clock domain (pic_c1k).
For edge-triggered interrupts, the gateway also converts the request to a level-triggered interrupt signal by
setting its internal interrupt pending (IP) bit.
The gateway then signals the level-triggered request to the PIC core by asserting its interrupt request signal.
The pending interrupt is visible to firmware by reading the corresponding intpend bit of themeipX register.
With the pending interrupt, the source’s interrupt priority (indicated by the priority field of themeip 1S
register) is forwarded to the evaluation logic.
If the corresponding interrupt enable (i.e., inten bit of themeieS register is set), the pending interrupt's
priority is sent to the input of the first-level 2-input comparator.
The priorities of a pair of interrupt sources are compared:
a. Ifthe two priorities are different, the higher priority and its associated hardwired interrupt source 1D
are forwarded to the second-level comparator.
b. If the two priorities are the same, the priority and the lower hardwired interrupt source ID are
forwarded to the second-level comparator.
Each subsequent level of comparators compares the priorities from two comparator outputs of the previous
level:
a. Ifthe two priorities are different, the higher priority and its associated interrupt source ID are
forwarded to the next-level comparator.
b. If the two priorities are the same, the priority and the lower interrupt source ID are forwarded to the
next-level comparator.
The output of the last-level comparator indicates the highest priority (maximum priority) and lowest interrupt
source ID (interrupt ID) of all currently pending and enabled interrupts.
Maximum priority is compared to the higher of the two priority thresholds (i.e., prithresh field of themeipt
and currpri field of the meicurpl registers):
a. If maximum priority is higher than the two priority thresholds, themexintirq signal is asserted.
b. If maximum priority is the same as or lower than the two priority thresholds, themexintirq signal
is deasserted.
The mexintirq signal’s state is then reflected in the meip bit of the RISC-V hart'smip register.
In addition, maximum priority is compared to the wake-up priority level:
a. If maximum priority is 15 (or O for reversed priority order), the wake-up natification (WUN) bit is set.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 46 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

b. If maximum priority is lower than 15 (or O for reversed priority order), the wake-up notification
(WUN) bit is not set.

14. The WUN state is indicated to the target hart with the mhwakeup signal?’.

15. When the target hart takes the external interrupt, it disables all interrupts (i.e., clears the mie bit of the RISC-
V hart's mstatus register) and jumps to the external interrupt handler.

16. The external interrupt handler writes to the meicpct register to trigger the capture of the interrupt source ID
of the currently highest-priority pending external interrupt (in themeihap register) and its corresponding
priority (in the meicidpl register). Note that the captured content of the claimid field of themeihap register
and its corresponding priority in themeicidp1 register is neither affected by the priority thresholds
(prithresh field of the meipt and currpri field of the meicurpl registers) nor by the core’s external interrupt
enable bit (meie bit of the RISC-V hart's mie register).

17. The handler then reads the meihap register to obtain the interrupt source ID provided in the claimid field.
Based on the content of the meihap register, the external interrupt handler jumps to the handler specific to
this external interrupt source.

18. The source-specific interrupt handler services the external interrupt, and then:

a. For level-triggered interrupt sources, the interrupt handler clears the state in the SoC IP which
initiated the interrupt request.

b. For edge-triggered interrupt sources, the interrupt handler clears the IP bit in the source’s gateway
by writing to the meigwc 1rS register.

19. The clearing deasserts the source’s interrupt request to the PIC core and stops this external interrupt source
from participating in the highest priority evaluation.

20. In the background, the PIC core continuously evaluates the next pending interrupt with highest priority and
lowest interrupt source ID:

a. If there are other interrupts pending, enabled, and with a priority level higher than prithresh field of
the meipt and currpri field of the meicurpl registers, mexintirq stays asserted.

b. If there are no further interrupts pending, enabled, and with a priority level higher than prithresh
field of the meipt and currpri field of the meicurpl registers, mexintirq is deasserted.

21. Firmware may update the content of the meihap and meicidp1 registers by writing to the meicpct
register to trigger a new capture.

6.6 Support for Vectored External Interrupts

Note: The RISC-V standard defines support for vectored interrupts down to an interrupt class level (i.e., timer,
software, and external interrupts for each privilege level), but not to the granularity of individual external interrupt
sources (as described in this section). The two mechanisms are independent of each other and should be used
together for lowest interrupt latency. For more information on the standard RISC-V vectored interrupt support, see
Section 3.1.7 in [2].

The VeeR EH1 PIC implementation provides support for vectored external interrupts. The content of the meihap
register is a full 32-bit pointer to the specific vector to the handler of the external interrupt source which needs
service. This pointer consists of a 22-bit base address (base) of the external interrupt vector table, the 8-bit claim ID
(claimid), and a 2-bit ‘0’ field. The claimid field is adjusted with 2 bits of zeros to construct the offset into the vector
table containing 32-bit vectors. The external interrupt vector table resides either in the DCCM, SoC memory, or a
dedicated flop array in the core.

2" Note that the core is only woken up from the power management Sleep (pmu/fw-halt) state if the mie bit of themstatus and the
meie bit of the mie standard RISC-V registers are both set.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 47 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

External Interrupt
Vector Table

base —»

No-Interrupt Pointer

Source ID 1 Pointer

External Interrupt
Handler Text Blocks

Y

No-Interrupt
Handler

Y

External Interrupt
Handler 1

Y

Source ID 2 Pointer

External Interrupt
Handler 2

‘ meihap ‘
{base, claimid, 2'b0}

-

Source ID 3 Pointer

Source ID 255 Pointer

Figure 6-5 Vectored External Interrupts

B e R S—
32 bits

Y

External Interrupt
Handler 3

External Interrupt
Handler 255

22/12/2022

Arbitrary Size Text Blocks

Figure 6-5 depicts the steps from taking the external interrupt to starting to execute the interrupt source-specific
handler. When the core takes an external interrupt, the initiated external interrupt handler executes the following

operations:
1. Save register(s) used in this handler on the stack
2.
3. Load the meihap control/status register into regX
4. Load memory location at address in regX into regY
5.

Store to the meicpct control/status register to capture a consistent claim ID / priority level pair

Jump to address in regy (i.e., start executing the interrupt source-specific handler)

Note: Two registers (regX and regyY) are shown above for clarification only. The same register can be used.

Note: The interrupt source-specific handler must restore the register(s) saved in step 1. above before executing the

mret instruction.

It is possible in some corner cases that the captured claim ID read from themeihap register is O (i.e., no interrupt
request is pending). To keep the interrupt latency at a minimum, the external interrupt handler above should not
check for this condition. Instead, the pointer stored at the base address of the external interrupt vector table (i.e.,
pointer 0) must point to a ‘no-interrupt’ handler, as shown in Figure 6-5 above. That handler can be as simple as
executing a return from interrupt (i.e., mret) instruction.

Note that it is possible for multiple interrupt sources to share the same interrupt handler by populating their respective
interrupt vector table entries with the same pointer to that handler.

6.7 Interrupt Chaining

Figure 6-6 depicts the concept of chaining interrupts. The goal of chaining is to reduce the overhead of pushing and
popping state to and from the stack while handling a series of Interrupt Service Routines (ISR) of the same priority
level. The first ISR of the chain saves the state common to all interrupt handlers of this priority level to the stack and
then services its interrupt. If this handler needs to save additional state, it does so immediately after saving the
common state and then restores only the additional state when done. At the end of the handler routine, the ISR
writes to the meicpct register to capture the latest interrupt evaluation result, then reads themeihap register to
determine if any other interrupts of the same priority level are pending. If no, it restores the state from the stack and
exits. If yes, it immediately jumps into the next interrupt handler skipping the restoring of state in the finished handler
as well as the saving of the same state in the next handler. The chaining continues until no other ISRs of the same
priority level are pending, at which time the last ISR of the chain restores the original state from the stack again.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

48 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

pusl state push state push state push state
Ext |nal Ext Inal Ext nal Ex{ [nal
Int¢ |upt Int¢ jupt Int¢ |upt LI Int¢ |upt
Han er A Han erB Han erC Harl ern
N Y N
pop state pop state pop state pop s}ate

Figure 6-6 Concept of Interrupt Chaining

6.8 Interrupt Nesting

Support for multiple levels of nested interrupts helps to provide a more deterministic interrupt latency at higher priority
levels. To achieve this, a running interrupt handler with lower priority must be preemptable by a higher-priority
interrupt. The state of the preempted handler is saved before the higher priority interrupt is executed, so that it can
continue its execution at the point it was interrupted.

VeeR EH1 and its PIC provide supported for up to 15 nested interrupts, one interrupt handler at each priority level.
The conceptual steps of nesting are:

1.

2.

The external interrupt is taken as described in step 15. of Section 6.5.2 Regular Operation. When the core
takes the external interrupt, it automatically disables all interrupts.

The external interrupt handler executes the following steps to get into the source-specific interrupt handler,
as described in Section 6.6:

st meicpct // atomically captures winning claim ID and priority level
1d meihap // get pointer to interrupt handler starting address

1d isr_addr // load interrupt handler starting address

jmp isr_addr // jump to source-specific interrupt handler

The source-specific interrupt handler then saves the state of the code it interrupted (including the priority
level in case it was an interrupt handler) to the stack, sets the priority threshold to its own priority, and then
reenables interrupts:

push mepc, mstatus, mie,

push meicurpl // save interrupted code’s priority level
1d meicidpl // read interrupt handler’s priority level
st meicurpl // change threshold to handler’s priority
mstatus.mei=1 // reenable interrupts

Any external interrupt with a higher priority can now safely preempt the currently executing interrupt handler.
Once the interrupt handler finished its task, it disables any interrupts and restores the state of the code it
interrupted:

mstatus.mei=0 // disable all interrupts

pop meicurpl // get interrupted code’s priority level

st meicurpl // set threshold to previous priority

pop mepc, mstatus, mie, ..

mret // return from interrupt, reenable interrupts

The interrupted code continues to execute.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 49 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

6.9 Performance Targets

The target latency through the PIC, including the clock domain crossing latency incurred by the gateway, is 4 core
clock cycles.

6.10 Configurability

Typical implementations require fewer than 255 external interrupt sources. Code should only be generated for
functionality needed by the implementation.

6.10.1 Rules

* The IDs of external interrupt sources must start at 1 and be contiguous.
« All unused register bits must be hardwired to ‘0’

6.10.2 Build Arguments
The PIC build arguments are:

*« PIC base address for memory-mapped control/status registers (PIC_base_addr)
0 See Section 16.2.2

¢ Number of external interrupt sources
0 Total interrupt sources (RV_PIC_TOTAL_INT): 2..255

6.10.3 Impact on Generated Code

6.10.3.1 External Interrupt Sources
The number of required external interrupt sources has an impact on the following:

* General impact:
0 Signal pins:
exintsrc_req[S]
0 Registers:
meipls
meipX
o Logic:
Gateway S
e Target PIC core impact:
0 Registers:
meieS
o Logic:
Gating of priority level with interrupt enable
Number of first-level comparators
Unnecessary levels of the comparator tree

6.10.3.2 Further Optimizations

Register fields, bus widths, and comparator MUXs are sized to cover the maximum external interrupt source IDs of
255. For approximately every halving of the number of interrupt sources, it would be possible to reduce the number
of register fields holding source IDs, bus widths carrying source IDs, and source ID MUXs in the comparators by one.
However, the overall reduction in logic is quite small, so it might not be worth the effort.

6.11 PIC Control/Status Registers

A summary of the PIC control/status registers in CSR address space:

« External Interrupt Priority Threshold Register (meipt) (see Section 6.11.5)

« External Interrupt Vector Table Register (meivt) (see Section 6.11.6)

« External Interrupt Handler Address Pointer Register (meihap) (see Section 6.11.7)

« External Interrupt Claim ID / Priority Level Capture Trigger Register (meicpct) (see Section 6.11.8)
« External Interrupt Claim ID’s Priority Level Register (meicidpl) (see Section 6.11.9)

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 50 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

« External Interrupt Current Priority Level Register (meicurpl) (see Section 6.11.10)
A summary of the PIC memory-mapped control/status registers:

* PIC Configuration Register (mpiccfg) (see Section 6.11.1)

« External Interrupt Priority Level Registers (meiplS) (see Section 6.11.2)

« External Interrupt Pending Registers (meipX) (see Section 6.11.3)

« External Interrupt Enable Registers (meieS) (see Section 6.11.4)

* External Interrupt Gateway Configuration Registers (meigwctrlS) (see Section 6.11.11)
« External Interrupt Gateway Clear Registers (meigwclrS) (see Section 6.11.12)

All reserved and unused bits in these control/status registers must be hardwired to ‘0’. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

Note: All memory-mapped register writes must be followed by a fence instruction to enforce ordering and
synchronization.

Note: All memory-mapped control/status register accesses must be word-sized and word-aligned. Non-word
sized/aligned loads cause a load access fault exception, and non-word sized/aligned stores cause a store/AMO
access fault exception.

Note: Accessing unused addresses within the 32KB PIC address range do not trigger an unmapped address
exception. Reads to unmapped addresses return 0, writes to unmapped addresses are silently dropped.
6.11.1 PIC Configuration Register (mpiccfqg)

The PIC configuration register is used to select the operational parameters of the PIC.

This 32-bit register is an idempotent memory-mapped control register.

Table 6-1 PIC Configuration Register (mpiccfg, at PIC_base_addr+0x3000)

Field Bits Description Access | Reset
Reserved | 31:1 | Reserved R 0
priord 0 Priority order: R/W 0

0: RISC-V standard compliant priority order (O=lowest to 15=highest)
1: Reverse priority order (15=lowest to O=highest)

6.11.2 External Interrupt Priority Level Registers (meiplS)

There are 255 priority level registers, one for each external interrupt source. Implementing individual priority level
registers allows a debugger to autonomously discover how many priority level bits are supported for this interrupt
source. Firmware must initialize the priority level for each used interrupt source. Firmware may also read the priority
level.

Implementation Note: The read and write paths between the core and themeip1S registers must support direct and
inverted accesses, depending on the priority order set in the priord bit of thempiccfg register. This is necessary to
support the reverse priority order feature.

These 32-bit registers are idempotent memory-mapped control registers.

Table 6-2 External Interrupt Priority Level Register S=1..255 (meiplS, at PIC_base_addr+S*4)

Field Bits Description Access | Reset

Reserved | 31:4 Reserved R 0

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 51 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Field Bits Description Access | Reset

priority 3:0 External interrupt priority level for interrupt source ID S: R/W 0
RISC-V standard compliant priority order:

0: Never interrupt

1..15: Interrupt priority level (1 is lowest, 15 is highest)
Reverse priority order:

15: Never interrupt

14..0: Interrupt priority level (14 is lowest, 0 is highest)

6.11.3 External Interrupt Pending Registers (meipX)

Eight external interrupt pending registers are needed to report the current status of up to 255 independent external
interrupt sources. Each bit of these registers corresponds to an interrupt pending indication of a single external
interrupt source. These registers only provide the status of pending interrupts and cannot be written.

These 32-bit registers are idempotent memory-mapped status registers.

Table 6-3 External Interrupt Pending Register X=0..7 (meipX, at PIC_base_addr+0x1000+X*4)

Field Bits | Description Access | Reset
X=0,Y=1.31 and X=1..7, Y=0.31
intpendX*32+Y | Y External interrupt pending for interrupt source ID X*32+Y: R 0

0: Interrupt not pending
1: Interrupt pending

X=0,Y=0

Reserved 0 Reserved R 0

6.11.4 External Interrupt Enable Registers (meieS)

Each of the up to 255 independently controlled external interrupt sources has a dedicated interrupt enable register.
Separate registers per interrupt source were chosen for ease-of-use and compatibility with existing controllers.

(Note: Not packing together interrupt enable bits as bit vectors results in context switching being a more expensive
operation.)

These 32-bit registers are idempotent memory-mapped control registers.

Table 6-4 External Interrupt Enable Register S=1..255 (meieS, at PIC_base_addr+0x2000+S*4)

Field Bits Description Access | Reset
Reserved | 31:1 Reserved R 0
inten 0 External interrupt enable for interrupt source ID S: R/W 0

0: Interrupt disabled
1: Interrupt enabled

6.11.5 External Interrupt Priority Threshold Register (meipt)

The meipt register is used to set the interrupt target's priority threshold. Interrupt notifications are sent to a target
only for external interrupt sources with a priority level strictly higher than this target's threshold. Hosting the threshold

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 52 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

in a separate register allows a debugger to autonomously discover how many priority threshold level bits are
supported.

Implementation Note: The read and write paths between the core and themeipt register must support direct and
inverted accesses, depending on the priority order set in the priord bit of thempiccfg register. This is necessary to
support the reverse priority order feature.

This 32-bit register is mapped to the non-standard read/write CSR address space.

Table 6-5 External Interrupt Priority Threshold Register (meipt, at CSR 0xBC9)

Field Bits Description Access | Reset
Reserved | 31:4 | Reserved R 0
prithresh | 3:0 External interrupt priority threshold: R/W 0

RISC-V standard compliant priority order:
0: No interrupts masked

1..14: Mask interrupts with priority strictly lower than or equal to this
threshold

15: Mask all interrupts
Reverse priority order:
15: No interrupts masked

14..1: Mask interrupts with priority strictly lower than or equal to this
threshold

0: Mask all interrupts

6.11.6 External Interrupt Vector Table Register (meivt)

The meivt register is used to set the base address of the external vectored interrupt address table. The value
written to the base field of the meivt register appears in the base field of the meihap register.

This 32-bit register is mapped to the non-standard read-write CSR address space.

Table 6-6 External Interrupt Vector Table Register (meivt, at CSR 0xBC8)

Field Bits Description Access | Reset
base 31:10 | Base address of external interrupt vector table R/W 0
Reserved | 9:0 Reserved R 0

6.11.7 External Interrupt Handler Address Pointer Register (meihap)

The meihap register provides a pointer into the vectored external interrupt table for the highest-priority pending
external interrupt. The winning claim ID is captured in the claimid field of themeihap register when firmware writes
to the meicpct register to claim an external interrupt. The priority level of the external interrupt source
corresponding to the claimid field of this register is simultaneously captured in the clidpri field of themeicidpl
register. Since the PIC core is constantly evaluating the currently highest-priority pending interrupt, this mechanism
provides a consistent snapshot of the highest-priority source requesting an interrupt and its associated priority level.
This is important to support nested interrupts.

The meihap register contains the full 32-bit address of the pointer to the starting address of the specific interrupt
handler for this external interrupt source. The external interrupt handler then loads the interrupt handler’s starting
address and jumps to that address.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 53 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Alternatively, the external interrupt source ID indicated by the claimid field of themeihap register may be used by the
external interrupt handler to calculate the address of the interrupt handler specific to this external interrupt source.

Implementation Note: The base field in the meihap register reflects the current value of the base field in themeivt
register. l.e., base is not stored in the meihap register.

This 32-bit register is mapped to the non-standard read-only CSR address space.

Table 6-7 External Interrupt Handler Address Pointer Register (meihap, at CSR 0xFC8)

Field Bits Description Access | Reset

base 31:10 | Base address of external interrupt vector table (i.e., base field ofmeivt R 0
register)

claimid 9:2 External interrupt source 1D of highest-priority pending interrupt (i.e., R 0

lowest source ID with highest priority)

00 1.0 Must read as ‘00’ R 0

6.11.8 External Interrupt Claim ID / Priority Level Capture Trigger Register (meicpct)

The meicpct register is used to trigger the simultaneous capture of the currently highest-priority interrupt source ID
(in the claimid field of the meihap register) and its corresponding priority level (in the clidpri field of themeicidpl
register) by writing to this register. Since the PIC core is constantly evaluating the currently highest-priority pending
interrupt, this mechanism provides a consistent snapshot of the highest-priority source requesting an interrupt and its
associated priority level. This is important to support nested interrupts.

The meicpct register has WARO (Write Any value, Read 0) behavior. Writing ‘0’ is recommended.

Implementation Note: The meicpct register does not have any physical storage elements associated with it. It is
write-only and solely serves as the trigger to simultaneously capture the winning claim ID and corresponding priority
level.

This 32-bit register is mapped to the non-standard read/write CSR address space.

Table 6-8 External Interrupt Claim ID / Priority Level Capture Trigger Register (meicpct, at CSR 0xBCA)

Field Bits Description Access | Reset

Reserved | 31:0 Reserved RO/WA | O

6.11.9 External Interrupt Claim ID’s Priority Level Register (meicidpl)

The meicidp1l register captures the priority level corresponding to the interrupt source indicated in the claimid field
of the meihap register when firmware writes to the meicpct register. Since the PIC core is constantly evaluating the
currently highest-priority pending interrupt, this mechanism provides a consistent snapshot of the highest-priority
source requesting an interrupt and its associated priority level. This is important to support nested interrupts.

Implementation Note: The read and write paths between the core and themeicidp1 register must support direct
and inverted accesses, depending on the priority order set in the priord bit of thempiccfg register. This is
necessary to support the reverse priority order feature.

This 32-bit register is mapped to the non-standard read/write CSR address space.

Table 6-9 External Interrupt Claim ID’s Priority Level Register (meicidpl, at CSR 0xBCB)

Field Bits Description Access | Reset

Reserved | 31:4 Reserved R 0

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 54 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Field Bits Description Access | Reset

clidpri 3:0 Priority level of preempting external interrupt source (corresponding to R/W 0
source ID read from claimid field of meihap register)

6.11.10 External Interrupt Current Priority Level Register (meicurpl)

The meicurpl register is used to set the interrupt target’s priority threshold for nested interrupts. Interrupt
notifications are signaled to the core only for external interrupt sources with a priority level strictly higher than the
thresholds indicated in this register and themeipt register.

The meicurpl register is written by firmware, and not updated by hardware. The interrupt handler should read its
own priority level from the clidpri field of themeicidpl register and write it to the currpri field of themeicurpl
register. This avoids potentially being interrupted by another interrupt request with lower or equal priority once
interrupts are reenabled.

Note: Providing the meicurpl register in addition to the meipt threshold register enables an interrupt service
routine to temporarily set the priority level threshold to its own priority level. Therefore, only new interrupt requests
with a strictly higher priority level are allowed to preempt the current handler, without modifying the longer-term
threshold set by firmware in the meipt register.

Implementation Note: The read and write paths between the core and themeicurpl register must support direct
and inverted accesses, depending on the priority order set in the priord bit of thempiccfg register. Thisis
necessary to support the reverse priority order feature.

This 32-bit register is mapped to the non-standard read/write CSR address space.

Table 6-10 External Interrupt Current Priority Level Register (meicurpl, at CSR 0xBCC)

Field Bits Description Access | Reset

Reserved | 31:4 | Reserved R 0

currpri 3:0 Priority level of current interrupt service routine (managed by firmware) R/W 0
6.11.11 External Interrupt Gateway Configuration Registers (meigwctrlS)

Each configurable gateway has a dedicated configuration register to control the interrupt type (i.e., edge- vs. level-
triggered) as well as the interrupt signal polarity (i.e., low-to-high vs. high-to-low transition for edge-triggered
interrupts, active-high vs. -low for level-triggered interrupts).

Note: A register is only present for interrupt source S if a configurable gateway is instantiated.
These 32-bit registers are idempotent memory-mapped control registers.

Table 6-11 External Interrupt Gateway Configuration Register S=1..255 (meigwctrlS, at
PIC_base_addr+0x4000+S*4)

Field Bits Description Access | Reset
Reserved | 31:2 Reserved R 0
type 1 External interrupt type for interrupt source ID S: R/W 0

0: Level-triggered interrupt
1: Edge-triggered interrupt

polarity 0 External interrupt polarity for interrupt source ID S: R/W 0
0: Active-high interrupt
1: Active-low interrupt

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 55 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

6.11.12 External Interrupt Gateway Clear Registers (meigwcirS)

Each configurable gateway has a dedicated clear register to reset its interrupt pending (IP) bit. For edge-triggered
interrupts, firmware must clear the gateway’s IP bit while servicing the external interrupt of source ID S by writing to
the meigwc 1rS register.

Note: A register is only present for interrupt source S if a configurable gateway is instantiated.

The meigwc 1rS register has WARO (Write Any value, Read 0) behavior. Writing ‘0’ is recommended.

Implementation Note: The meigwc 1rS register does not have any physical storage elements associated with it. It
is write-only and solely serves as the trigger to clear the interrupt pending (IP) bit of the configurable gateway S.

These 32-bit registers are idempotent memory-mapped control registers.

Table 6-12 External Interrupt Gateway Clear Register S=1..255 (meigwclrS, at PIC_base_addr+0x5000+S*4)

Field Bits Description Access | Reset
Reserved | 31:0 Reserved RO/WA | O
6.12 PIC CSR Address Map

Table 6-13 summarizes the PIC non-standard RISC-V CSR address map.

Table 6-13 PIC Non-standard RISC-V CSR Address Map

Number | Privilege | Name Description

0xBC8 MRW meivt External interrupt vector table register

0xBC9 MRW meipt External interrupt priority threshold register

0xBCA MRW meicpct External interrupt claim ID / priority level capture trigger register
0xBCB MRW meicidpl External interrupt claim ID’s priority level register

0xBCC MRW meicurpl External interrupt current priority level register

OxFC8 MRO meihap External interrupt handler address pointer register

6.13 PIC Memory-mapped Register Address Map
Table 6-14 summarizes the PIC memory-mapped register address map.

Table 6-14 PIC Memory-mapped Register Address Map

Address Offset from PIC_base_addr
Name Description
Start End
+ 0x0000 + 0x0003 Reserved Reserved
+ 0x0004 + 0x0004 + Smax*4-1 meiplS External interrupt priority level register
+ 0x0004 + Smax*4 + OXOFFF Reserved Reserved
+ 0x1000 + 0x1000 + (Xmax+1)*4-1 meipX External interrupt pending register
+ 0x1000 + (Xmaxt+1)*4 + OX1FFF Reserved Reserved

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 56 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Address Offset

from PIC_base_addr

Name Description
Start End
+ 0x2000 + 0x2003 Reserved Reserved
+ 0x2004 + 0x2004 + Smax*4-1 meieS External interrupt enable register
+ 0x2004 + Smax*4 + Ox2FFF Reserved Reserved
+ 0x3000 + 0x3003 mpiccfg Ext_ernal interrupt PIC configuration
register
+ 0x3004 + OX3FFF Reserved Reserved
+ 0x4000 + 0x4003 Reserved Reserved
+ 0x4004 + 0x4004 + Smax*4-1 meigwctrlS | External interrupt gateway configuration

register (for configurable gateways only)

+ 0x4004 + Smax

*4 + OX4FFF

Reserved Reserved

+ 0x5000

+ 0x5003

Reserved Reserved

+ 0x5004

+ 0x5004 + Smax*4-1

meigwclrS | External interrupt gateway clear register
(for configurable gateways only)

+ 0x5004 + Smax

*4 + OXTFFF

Reserved Reserved

Note: Xmax = (Smax + 31) // 32, whereas // is an integer division ignoring the remainder

6.14 Interrupt Enable/Disable Code Samples

6.14.1 Example Interrupt Flows

« Macro flow to enable interrupt source id 5 with priority set to 7, threshold set to 1, and gateway configured
for edge-triggered/active-low interrupt source:

disable_ext_int // Disable interrupts (MIE[meip]=0)

set_threshold 1 //

init_gateway 5, 1, 1 //
clear_gateway 5 //
set_priority 5, 7 //
enable_interrupt 5 //

enable_ext_int //

e Macro flow to initialize priority order:

(o]

To RISC-V standard order:

Program global threshold to 1

Configure gateway id=5 to edge-triggered/low
Clear gateway id=5

Set id=5 threshold at 7

Enable id=5

Enable interrupts (MIE[meip]=1)

init_priorityorder 0 // Set priority to standard RISC-V order

init_nstthresholds 0 //

To reverse priority order:

Initialize nesting thresholds to 0

init_priorityorder 1 // Set priority to reverse order

init_nstthresholds 15 //

Initialize nesting thresholds to 15

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 57 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

* Code to jump to the interrupt handler from the RISC-V trap vector:
trap_vector: // Interrupt trap starts here when MTVEC[mode]=1
csrwi meicpct, 1 // Capture winning claim id and priority
csrr tO, meihap // Load pointer index
lw t1, 0(to) // Load vector address
jr t1 // Go there

e Code to handle the interrupt

eint_handler:
: // Do some useful interrupt handling
mret // Return from ISR

6.14.2 Example Interrupt Macros

* Disable external interrupt:

.macro disable_ext_int
// Clear MIE[miep]
disable_ext_int_\@:
1i a0, (1<<11)
csrrc zero, mie, a@
.endm

* Enable external interrupt:

.macro enable_ext_int
enable_ext_int_\@:

// Set MIE[miep]

1i a0, (1<<11)

csrrs zero, mie, a0
.endm

« Initialize external interrupt priority order:

.macro init_priorityorder priord
init_priorityorder_\@:
1i tp, (RV_PIC_BASE_ADDR + RV_PIC_MPICCFG_OFFSET)
1i toe, \priord
sw tO, 0(tp)
.endm

« Initialize external interrupt nesting priority thresholds:

.macro init_nstthresholds threshold
init_nstthresholds_\@:
1i t0, \threshold
1i tp, (RV_PIC_BASE_ADDR + RV_PIC_MEICIDPL_OFFSET)
sw tO, 0(tp)
1i tp, (RV_PIC_BASE_ADDR + RV_PIC_MEICURPL_OFFSET)
sw to, o(tp)
.endm

* Set external interrupt priority threshold:

.macro set_threshold threshold

set_threshold_\@:
1i tp, (RV_PIC_BASE_ADDR + RV_PIC_MEIPT_OFFSET)
1i t0, \threshold
sw tO, 0(tp)

.endm

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 58 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

* Enable interrupt for source id:

.macro enable_interrupt id

enable_interrupt_\@:
1i tp, (RV_PIC_BASE_ADDR + RV_PIC_MEIE_OFFSET + (\id <<2))
1i to, 1
sw tO, 0(tp)

.endm

« Set priority of source id:

.macro set_priority id, priority

set_priority \@:
1i tp, (RV_PIC_BASE_ADDR + RV_PIC_MEIPL_OFFSET + (\id <<2))
1li to, \priority
sw tO, 0(tp)

.endm

* Initialize gateway of source id:

.macro init_gateway id, polarity, type

init_gateway_ \@:
1i tp, (RV_PIC_BASE_ADDR + RV_PIC_MEIGWCTRL_OFFSET + (\id <<2))
1i to, ((\type<<1) | \polarity)
sw tO, 0(tp)

.endm

« Clear gateway of source id:

.macro clear_gateway id

clear_gateway_\@:
1i tp, (RV_PIC_BASE_ADDR + RV_PIC_MEIGWCLR_OFFSET + (\id <<2))
sw zero, 0O(tp)

.endm

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 59 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

7 Performance Monitoring

This chapter describes the performance monitoring features of the VeeR EH1 core.

7.1 Features

VeeR EH1 provides these performance monitoring features:

* Four standard 64-bit wide event counters

» Standard separate event selection for each counter

» Standard selective count enable/disable controllability

* Synchronized counter enable/disable controllability

* Standard cycle counter

» Standard retired instructions counter

* Support for standard SoC-based machine timer registers

7.2 Control/Status Registers

7.2.1 Standard RISC-V Registers
A list of performance monitoring-related standard RISC-V CSRs with references to their definitions:

* Machine Hardware Performance Monitor (ncycle{|h}, minstret{|h}, mhpmcounter3{|h}-
mhpmcounter31{|h}, and mhpmevent3-mhpmevent31) (see Section 3.1.11 in [2])

e Machine Timer Registers (ntime and mtimecmp) (see Section 3.1.10 in [2])
Note: mtime and mtimecmp are memory-mapped registers which must be provided by the SoC.

7.2.2 Platform-specific Control/Status Registers
A summary of platform-specific control/status registers in CSR space:
* Group Performance Monitor Control Register (mgpmc) (see Section 7.2.2.1)

All reserved and unused bits in these control/status registers must be hardwired to ‘0’. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

7.2.2.1 Group Performance Monitor Control Register (mgpmc)

The mgpmc register allows to synchronously enable or disable the four machine hardware performance monitor
counters mhpmcounter3..6. This register only controls if incrementing the counters on selected events is enabled or
disabled, but does not affect the counter values of the hardware performance monitor counters (i.e., the counters are
not reset or changed in any way).

This register is mapped to the non-standard read/write CSR address space.

Table 7-1 Group Performance Monitor Control Register (mgpmc, at CSR 0x7D0)

Field Bits Description Access | Reset
Reserved 311 Reserved R 0
enable 0 Group performance monitor counter control (nhpmcounter3..6): R/W 1

0: Disable incrementing of all performance monitor counters
1: Enable incrementing of all performance monitor counters

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 60 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

7.3 Counters

Only event counters 3 to 6 (nhpmcounter3{|h}-mhpmcounter6{|h}) and their corresponding event selectors
(mhpmevent3-mhpmevent6) are functional on VeeR EH1. Event counters 7 to 31 (mhpmcounter7{|h}-
mhpmcounter31{|h}) and their corresponding event selectors (mhpmevent7-mhpmevent31) are hardwired to ‘0'.

7.4 Count-Impacting Conditions

A few comments to consider on conditions that have an impact on the performance monitor counting:

e While in the pmu/fw-halt power management state, performance counters (including themcyc le counter)
are disabled.

¢ While in debug halt (db-halt) state, the stopcount bit of thedcsr register (see Section 9.1.3.5) determines if
performance counters are enabled.

* While in the pmu/fw-halt power management state or the debug halt (db-halt) state with the stopcount bit
set, DMA accesses are allowed, but not counted by the performance counters. It would be up to the bus
master to count accesses while the core is in a halt state.

* While executing PAUSE, performance counters are enabled.

Also, it is recommended that the performance counters are disabled (using themgpmc register) before the counters
and event selectors are modified, and then reenabled again. This minimizes the impact of reading and writing the
counter and event selector CSRs on the event count values, specifically for the CSR read/write events (i.e., events
#16 and #17). In general, performance counters are incremented after a read access to the counter CSRs, but
before a write access to the counter CSRs.

7.5 Events

Table 7-2 provides a list of the countable events.

Note: The event selector registers mhpmevent3-mhpmevent6 have WARL behavior. When writing a value larger
than the highest supported event number, the event selector is set to the highest event number.

Table 7-2 List of Countable Events

Legend: IP = In-Pipe; OOP = Out-Of-Pipe

Event No | Event Name Description

0 Reserved (no event counted)

1 cycles clocks active Number of cycles clock active (OOP)

2 I-cache hits Number of I-cache hits (OOP, speculative, valid fetch & hit)

3 I-cache misses Number of I-cache misses (OOP, valid fetch & miss)

4 instr committed - all Number of all (16b+32b) instructions committed (IP, non-speculative,
0/1/2)

5 instr committed - 16b Number of 16b instructions committed (IP, non-speculative, 0/1/2)

6 instr committed - 32b Number of 32b instructions committed (IP, non-speculative, 0/1/2)

7 instr aligned - all Number of all (16b+32b) instructions aligned (OOP, speculative, 0/1/2)

8 instr decoded - all Number of all (16b+32b) instructions decoded (OOP, speculative, 0/1/2)

9 muls committed Number of multiplications committed (IP, 0/1)

10 divs committed Number of divisions and remainders committed (1P, 0/1)

11 loads committed Number of loads committed (IP, 0/1)

12 stores committed Number of stores committed (IP, 0/1)

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

61 of 115

22/12/2022

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

Event No | Event Name Description

13 misaligned loads Number of misaligned loads (IP, 0/1)

14 misaligned stores Number of misaligned stores (IP, 0/1)

15 alus committed Number of ALU?8 operations committed (1P, 0/1/2)

16 CSR read Number of CSR read instructions committed (IP, 0/1)

17 CSR read/write Number of CSR read/write instructions committed (IP, 0/1)

18 CSR write rd==0 Number of CSR write rd==0 instructions committed (IP, 0/1)

19 ebreak Number of ebreak instructions committed (IP, 0/1)

20 ecall Number of ecall instructions committed (IP, 0/1)

21 fence Number of fence instructions committed (IP, 0/1)

22 fence.i Number of fence.i instructions committed (1P, 0/1)

23 mret Number of mret instructions committed (IP, 0/1)

24 branches committed Number of branches committed (IP)

25 branches mispredicted Number of branches mispredicted (IP)

26 branches taken Number of branches taken (IP)

27 unpredictable branches | Number of unpredictable branches (IP)

28 cycles fetch stalled Number of cycles fetch ready but stalled (OOP)

29 cycles aligner stalled Number of cycles one or more instructions valid in aligner but IB full

(O0OP)
30 cycles decode stalled Number of cycles one or more instructions valid in IB but decode stalled
(O0P)

31 cycles postsync stalled | Number of cycles postsync stalled at decode (OOP)

32 cycles presync stalled Number of cycles presync stalled at decode (OOP)

33 cycles frozen Number of cycles pipe is frozen by LSU (OOP)
(Isu_freeze_dc3)

34 cycles SB/WB stalled Number of cycles decode stalled due to SB or WB full (OOP)
(Isu_store_stall_any)

35 cycles DMA DCCM Number of cycles DMA stalled due to decode for load/store (OOP)
transaction stalled
(dma_dccm_stall_any)

36 cycles DMA ICCM Number of cycles DMA stalled due to fetch (OOP)
transaction stalled
(dma_iccm_stall_any)

37 exceptions taken Number of exceptions taken (IP)

38 timer interrupts taken Number of timer?® interrupts taken (IP)

39 external interrupts taken | Number of external interrupts taken (IP)

2 NOP is an ALU operation. WFI is implemented as a NOP in VeeR EH1 and, hence, counted as an ALU operation was well.

2 Events counted include interrupts triggered by the standard RISC-V platform-level timer as well as by the two internal timers.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

62 of 115

22/12/2022

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

while disabled

Event No | Event Name Description

40 TLU flushes (flush Number of TLU flushes (flush lower) (IP)
lower)

41 branch error flushes Number of branch error flushes (IP)

42 I-bus transactions - instr | Number of instr transactions on I-bus interface (OOP)

43 D-bus transactions - Number of Id/st transactions on D-bus interface (OOP)
Id/st

44 D-bus transactions - Number of misaligned transactions on D-bus interface (OOP)
misaligned

45 I-bus errors Number of transaction errors on I-bus interface (OOP)

46 D-bus errors Number of transaction errors on D-bus interface (OOP)

47 cycles stalled due to I- Number of cycles stalled due to AXI4 or AHB-Lite I-bus busy (OOP)
bus busy

48 cycles stalled due to D- | Number of cycles stalled due to AX14 or AHB-Lite D-bus busy (OOP)
bus busy

49 cycles interrupts Number of cycles interrupts disabled (MSTATUS.MIE==0) (OOP)
disabled

50 cycles interrupts stalled | Number of cycles interrupts stalled while disabled (MSTATUS.MIE==0)

(OOP)

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

22/12/2022

63 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

8 Cache Control

This chapter describes the features to control the VeeR EH1 core’s instruction cache (I-cache).

8.1 Features

The VeeR EH1's I-cache control features are:

¢ Flushing the I-cache
« Capability to enable/disable I-cache
« Diagnostic access to data, tag, and status information of the I-cache

Note: The I-cache is an optional core feature. Instantiation of the I-cache is controlled by the RV_ICACHE_ENABLE
build argument.

8.2 Feature Descriptions

8.2.1 Cache Flushing

As described in Section 2.8.2, a debugger may initiate an operation that is equivalent to afence. i instruction by
writing a ‘1’ to the fence_i field of the dmst register. As part of executing this operation, the I-cache is flushed (i.e., all
entries in the I-cache are invalidated).

8.2.2 Enabling/Disabling I-Cache

As described in Section 2.8.1, each of the 16 memory regions has two control bits which are hosted in themrac
register. One of these control bits, cacheable, controls if accesses to that region may be cached. If the cacheable
bits of all 16 regions are set to ‘0’, the I-cache is effectively turned off.

8.2.3 Diagnostic Access

For firmware as well as hardware debug, direct access to the raw content of the data array, tag array, and status bits
of the I-cache may be important. Instructions stored in the cache, the tag of a cache line as well as status information
including a line’s valid bit and a set’s LRU bits can be manipulated. It is also possible to inject a parity/ECC error in
the data or tag array to check error recovery. Four control registers are used to provide read/write diagnostic access
to the two arrays and status bits. The dicawics register controls the selection of the array, way, and index of a
cache line. The dicad0/1 and dicago registers are used to perform a read or write access to the selected array
location. See Sections 8.5.1 - 8.5.4 for more detailed information.

Note: The instructions and the tags are stored in parity/ECC-protected SRAM arrays. The status bits are stored in
flops.

8.3 Use Cases

The I-cache control features can be broadly divided into two categories:
1. Debug Support
A few examples how diagnostic accesses (Section 8.2.3) may be useful for debug:

« Generating an I-cache dump (e.qg., to investigate performance issues).

* Injecting parity/ECC errors in the data or tag array of the I-cache.

» Diagnosing stuck-at bits in the data or tag array of the I-cache.

« Preloading the I-cache if a hardware bug prevents instruction fetching from memory.

2. Performance Evaluation

To evaluate the performance advantage of the I-cache, it is useful to run code with and without the cache
enabled. Enabling and disabling the I-cache (Section 8.2.2) is an essential feature for this.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 64 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

8.4 Theory of Operation

8.4.1 Read a Chunk of an I-cache Cache Line

The following steps must be performed to read a 32-bit chunk of instruction data and its associated 2 parity / 10 ECC
bits in an I-cache cache line:

1. Write array/way/address information which location to access in the I-cache to thedicawics register:
* array field: O (i.e., I-cache data array),
« way field: way to be accessed (i.e., 0..3), and
* index field: index of cache line to be accessed.
2. Read the dicago register which causes a read access from the I-cache data array at the location selected
by the dicawics register.
3. Read the dicado register to get the selected 32-bit cache line chunk (instr field), and read thedicad1l
register to get the associated parity/ECC bits (parityO and parityl / eccO and ecc1 fields).

8.4.2 Write a Chunk of an I-cache Cache Line

The following steps must be performed to write a 32-bit chunk of instruction data and its associated 2 parity / 10 ECC
bits in an I-cache cache line:

1. Write array/way/address information which location to access in the I-cache to thedicawics register:
e array field: O (i.e., I-cache data array),
« way field: way to be accessed (i.e., 0..3), and
* index field: index of cache line to be accessed.

2. Write the new instruction information to the instr field of thedicad®0 register, and write the calculated correct
instruction parity/ECC bits (unless error injection should be performed) to the parity0O and parity1 / eccO and
eccl fields of the dicad1 register.

3. Write a ‘1’ to the go field of the dicago register which causes a write access to the I-cache data array
copying the information stored in the dicado/1 registers to the location selected by the dicawics register.

8.4.3 Read or Write a Full I-cache Cache Line

The following steps must be performed to read or write instruction data and associated parity/ECC bits of a full I-
cache cache line:

1. Start with an index naturally aligned to the 64-byte cache line size (i.e., index[5:2] = '0000’).
2. Perform steps in Section 8.4.1 to read or Section 8.4.2 to write.

3. Increment the index.

4. Go back to step 2.) for a total of 16 iterations.

8.4.4 Read a Tag and Status Information of an I-cache Cache Line

The following steps must be performed to read the tag, tag’s parity/ECC bit(s), and status information of an I-cache
cache line:

1. Write array/way/address information which location to access in the I-cache to thedicawics register:
e arrayfield: 1 (i.e., I-cache tag array and status),
* way field: way to be accessed (i.e., 0..3), and
* index field: index of cache line to be accessed.
2. Read the dicago register which causes a read access from the I-cache tag array and status bits at the
location selected by the dicawics register.
3. Read the dicad@ register to get the selected cache line's tag (tag field) and valid bit (valid field) as well as
the set’s LRU bits (/ru field), and read the dicad1 register to get the tag’'s parity/ECC bit(s) (parity0O / eccO
field).

8.4.5 Write a Tag and Status Information of an I-cache Cache Line

The following steps must be performed to write the tag, tag’s parity/ECC bit, and status information of an I-cache
cache line:

1. Write array/way/address information which location to access in the I-cache to thedicawics register:

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 65 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

e array field: 1 (i.e., I-cache tag array and status),
« way field: way to be accessed (i.e., 0..3), and
* index field: index of cache line to be accessed.

2. Write the new tag, valid, and LRU information to the tag, valid, and Iru fields of thedicad®0 register, and
write the calculated correct tag parity/ECC bit (unless error injection should be performed) to the parity0 /
eccO field of the dicad1 register.

3. Write a ‘1’ to the go field of the dicago register which causes a write access to the I-cache tag array and
status bits copying the information stored in the dicad0/1 registers to the location selected by the
dicawics register.

8.5 I-Cache Control/Status Registers

A summary of the I-cache control/status registers in CSR address space:

* I-Cache Array/Way/Index Selection Register (dicawics) (see Section 8.5.1)
¢ |-Cache Array Data 0 Register (dicad0) (see Section 8.5.2)

* |-Cache Array Data 1 Register (dicadl) (see Section 8.5.3)

« |-Cache Array Go Register (dicago) (see Section 8.5.4)

All reserved and unused bits in these control/status registers must be hardwired to ‘0’. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

8.5.1 I-Cache Array/Waylindex Selection Register (dicawics)

The dicawics register is used to select a specific location in either the data array or the tag array / status of the I-
cache. In addition to selecting the array, the location in the array must be specified by providing the way, and index.
Once selected, the dicad0/1 registers (see Sections 8.5.2 and 8.5.3) hold the information read from or to be written
to the specified location, and the dicago register (see Section 8.5.4) is used to control the read/write access to the
specified I-cache array.

The cache line size of the I-cache is 64 bytes. Thedicawics register addresses two chunks consisting each of 16
consecutive bits of instruction data and separately protected by parity/ECC bits. There are 16 such chunk pairs in a
cache line.

Note: This register is accessible in Debug Mode only. Attempting to access this register in machine mode raises an
illegal instruction exception.

This register is mapped to the non-standard read-write CSR address space.

Table 8-1 I-Cache Array/Waylindex Selection Register (dicawics, at CSR 0x7C8)

Field Bits Description Access | Reset
Reserved | 31:25 | Reserved R 0
array 24 Array select: R/W 0

0: I-cache data array (incl. parity/ECC bits)
1: I-cache tag array (incl. parity/ECC bits) and status (incl. valid and

LRU bits)
Reserved | 23:22 | Reserved R 0
way 21:20 | Way select R/W 0
Reserved | 19:16 | Reserved R 0

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 66 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Field Bits Description Access | Reset
indexs° 15:2 | Index address bits select R/W 0
Notes:

« Index bits are right-justified; for I-cache sizes smaller than 256KB,
unused upper bits are 0

« For tag array and status, bits 5..2 are ignored by hardware
« This field does not have WARL behavior

Reserved | 1:0 Reserved R 0

8.5.2 I-Cache Array Data 0 Register (dicad0)

The dicado register, in combination with the dicad1 register (see Section 8.5.3), is used to store information read
from or to be written to the I-cache array location specified with thedicawics register (see Section 8.5.1).
Triggering a read or write access of the |-cache array is controlled by thedicago register (see Section 8.5.4). The
layout of the dicadO0 register is different for the data array and the tag array / status, as described in Table 8-2
below.

Note: During normal operation, the parity/ECC bits over the 32-bit instruction data as well as the tag are generated
and checked by hardware. However, to enable error injection, the parity/ECC bits must be computed by software for
I-cache data and tag array diagnostic writes.

Note: This register is accessible in Debug Mode only. Attempting to access this register in machine mode raises an
illegal instruction exception.

This register is mapped to the non-standard read-write CSR address space.

Table 8-2 I-Cache Array Data 0 Register (dicad0, at CSR 0x7C9)

Field Bits Description Access | Reset

I-cache data array

instr 31:0 | Instruction data R/W 0
31:16: instruction data bytes 3/2 (protected by parity1 / ecc1)
15:0: instruction data bytes 1/0 (protected by parity0O / eccO)

I-cache tag array and status bits

tag 31:12 | Tag R/W 0
Note:

Tag bits are right-justified; for I-cache sizes larger than 16KB, unused
higher bits are 0

Unused 11:7 Unused R/W 0

%0 veeR EH1’s I-cache supports four-way set-associativity, each way is subdivided into 4 banks, and each bank hosts 16 bytes of
a 64-byte cache line. A bank is selected by index[5:4]. The 16 bytes within a bank are selected by index[3:2] in increasing 32-bit
chunk pairs (i.e., ‘00": bytes 3..0, ‘01": bytes 7..4, ‘10": bytes 11..8, and ‘11": bytes 15..12).

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 67 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022
Field Bits Description Access | Reset
Iru 6:4 Pseudo LRU bits (same bits are accessed independent of selected way): | R/W 0

Bit 4: way0/1 / way2/3 selection
0: way0/1
1: way2/3
Bit 5: way0O / way1l selection
0: wayO
1: wayl
Bit 6: way2 / way3 selection
0: way2
1: way3
Unused 31 Unused R/W 0
valid 0 Cache line valid/invalid: R/W 0
0: cache line invalid
1: cache line valid

8.5.3 I-Cache Array Data 1 Register (dicadl)

The dicad1 register, in combination with the dicado register (see Section 8.5.38.5.2), is used to store information
read from or to be written to the I-cache array location specified with thedicawics register (see Section 8.5.1).

Triggering a read or write access of the I-cache array is controlled by thedicago register (see Section 8.5.4). The
layout of the dicad1 register is described in Table 8-3 below.

Note: During normal operation, the parity/ECC bits over the 32-bit instruction data as well as the tag are generated
and checked by hardware. However, to enable error injection, the parity/ECC bits must be computed by software for
I-cache data and tag array diagnostic writes.

Note: This register is accessible in Debug Mode only. Attempting to access this register in machine mode raises an
illegal instruction exception.

This register is mapped to the non-standard read-write CSR address space.

Table 8-3 I-Cache Array Data 1 Register (dicadl, at CSR 0x7CA)

Field Bits Description Access | Reset

Parity

Reserved | 31:2 | Reserved R 0

parityl 1 Even parity for I-cache data bytes 3/2 (instr[31:16]) R/W 0

parityO 0 Even parity for I-cache data bytes 1/0 (instr[15:0]), or R/W 0
Even parity for I-cache tag (tag)

ECC

Reserved | 31:10 | Reserved R 0

eccl 9:5 ECC for I-cache data bytes 3/2 (instr[31:16]) R/W 0

eccO 4:0 ECC for I-cache data bytes 1/0 (instr[15:0]), or R/W 0
ECC for I-cache tag (tag)

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 68 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

8.5.4 I-Cache Array Go Register (dicago)

The dicago register is used to trigger a read from or write to the I-cache array location specified with thedicawics
register (see Section 8.5.1). Reading the dicago register populates the dicad@/dicadl registers (see Sections
8.5.2 and 8.5.3) with the information read from the I-cache array. Writing a ‘1’ to the go field of thedicago register
copies the information stored in the dicad@/dicad1 registers to the I-cache array. The layout of thedicago
register is described in Table 8-4 below.

Note: This register is accessible in Debug Mode only. Attempting to access this register in machine mode raises an
illegal instruction exception.

The go field of the dicago register has W1RO0 (Write 1, Read 0) behavior, as also indicated in the ‘Access’ column.

This register is mapped to the non-standard read-write CSR address space.

Table 8-4 I-Cache Array Go Register (dicago, at CSR 0x7CB)

Field Bits Description Access | Reset
Reserved | 31:1 Reserved R 0
go 0 Read triggers an I-cache read, write-1 triggers an I-cache write RO/W1 | O

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 69 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

9 VeeR EH1 Debug Support

The VeeR EH1 core conforms to the “RISC-V Debug Specification 0.13.2, with JTAG DTM" document [3]. This
chapter provides a description of the implemented debug-related control and status register definitions. For a RISC-V
debug overview and detailed feature descriptions, refer to corresponding sections in [3].

9.1 Control/Status Registers
The RISC-V Debug architecture defines three separate address spaces: JTAG, Debug Module Interface, and RISC-V
CSR. The registers associated with these three address spaces are described in the following sections:

* Control/Status Registers in JTAG Address Space (see Section 9.1.1)
* Control/Status Registers in Debug Module Interface Address Space (see Section 9.1.2)
* Control/Status Registers in RISC-V CSR Address Space (see Section 9.1.3)

9.1.1 Control/Status Registers in JTAG Address Space

Table 9-1 summarizes the control/status registers in the JTAG Debug Transport Module address space.

Addresses shown below are in the 5-bit JTAG address space. A control/status register is addressed by setting the 5-
bit JTAG IR register.

Note: The core complex clock (c 1k) frequency must be at least twice the JTAG clock (j tag_tck) frequency for the
JTAG data to pass correctly through the clock domain crossing synchronizers.

Table 9-1 Registers in JTAG Debug Transport Module Address Space

JTAG DTM Name Description Section
Address

0x01 IDCODE JTAG IDCODE 9.1.1.1
0x10 dtmcs DTM control and status 9.1.1.2
0x11 dmi Debug module interface access 9.1.1.3
Ox1F BYPASS JTAG BYPASS 9.1.1.4

9.1.1.1 IDCODE Register (IDCODE)

The IDCODE register is a standard JTAG register. It is selected in the JTAG TAP controller’s IR register when the
TAP state machine is reset. The IDCODE register’s definition is exactly as defined in IEEE Std 1149.1-2013.

This register is read-only.

This register is mapped to the 5-bit JTAG address space.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 70 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

Table 9-2 IDCODE Register (IDCODE, at JTAG 0x01)

22/12/2022

Field Bits Description Access | Reset
version 31:28 | Identifies release version of this part R jtag_id[31:28]
value
(see Table 15-1)
partnum 27:12 | ldentifies designer's part number of this part R jtag_id[27:12]
value
(see Table 15-1)
manufid 11:1 | ldentifies designer/manufacturer of this part R jtag_id[11:1]
value
(see Table 15-1)
1 0 Must be ‘1’ R 1
9.1.1.2 DTM Control and Status Register (dtmcs)
The dtmcs register controls and provides status of the Debug Transport Module (DTM).
This register is mapped to the 5-bit JTAG address space.
Table 9-3 DTM Control and Status Register (dtmcs, at JTAG 0x10)
Field Bits Description Access | Reset
Reserved 31:18 | Reserved R 0
dmihardreset | 17 Not implemented R 0
Note: Hard reset of DTM not required in VeeR EH1 because DMI
accesses always succeed. Writes to this bit ignored.
dmireset 16 Not implemented R 0
Note: Reset of DTM'’s error state not required in VeeR EH1 because
DMI accesses always succeed. Writes to this bit ignored.
Reserved 15 Reserved 0
idle 14:12 | Hint to debugger of minimum number of cycles debugger should 0
spend in Run-Test/Idle after every DMI scan to avoid a ‘busy’ return
code (dmistat of 3). Debugger must still check dmistat when
necessary:
0: Not necessary to enter Run-Test/Idle at all.
Other values not implemented.
dmistat 11:10 | DMI status: R 0
0: No error
1: Reserved
2..3: Not implemented (DMI accesses always succeed)
abits 9:4 Size of address field in dmi register (see Table 9-4) R 7
version 3.0 Conforming to RISC-V Debug specification Version 0.13.2 1
9.1.1.3 Debug Module Interface Access Register (dmi)
The dmi register allows access to the Debug Module Interface (DMI).
In the JTAG TAP controller's Update-DR state, the DTM starts the operation specified in the op field.
Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 71 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

In the JTAG TAP controller's Capture-DR state, the DTM updates the data field with the result from that operation.

Note: No status is reported in the op field. Therefore, debuggers should refrain from batching together multiple
scans.

This register is mapped to the 5-bit JTAG address space.

Table 9-4 Debug Module Interface Access Register (dmi, at JTAG 0x11)

Field Bits Description Access | Reset

address 40:34 | Address used for DMI access. R/W 0
In Update-DR, value used to access DM over DMI.

data 33:2 Data to send to DM over DMI during Update-DR, and data returned R/W 0
from DM as result of previous operation.

op 1:0 For write: R/W 0
0: Ignore data and address (nop)
1: Read from address (read)
2: Write data to address (write)
3: Not implemented (do not use)
For read:
0: Previous operation completed successfully
1..3: Not implemented (DMI accesses always succeed)

9.1.1.4 BYPASS Register (BYPASS)

The BYPASS register is a standard JTAG register. It is implemented as a 1-bit register which has no functional effect,
except adding a 1-bit delay. It allows a debugger to not communicate with this TAP (i.e., bypass it).

Note: All unused addresses in the 5-bit JTAG address space (i.e., all addresses except 0x01 {DCODE), 0x10
(dtmcs), and 0x11 (dmi)) select the BYPASS register as well.

This register is mapped to the 5-bit JTAG address space.

Table 9-5 BYPASS Register (BYPASS, at JTAG 0x1F)

Field Bits Description Access | Reset

bypass 0 Bypass 0

9.1.2 Control/Status Registers in Debug Module Interface Address Space
Table 9-6 summarizes the control/status registers in the Debug Module Interface address space.

Registers in the Debug Module Interface address space are accessed through thedmi register in the JTAG address
space (see Section 9.1.1.3). The address field of the dmi register selects the Debug Module Interface register to be
accessed, the data field either provides the value to be written to the selected register or captures that register’s
value, and the op field selects the operation to be performed.

Addresses shown below are offsets relative to the Debug Module base address. VeeR EH1 supports a single
Debug Module with a base address of 0x00.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 72 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022
Table 9-6 Registers in Debug Module Interface Address Space
DMI Address Name Description Section
0x04 dataO Abstract data 0
9.1.2.7
0x05 datal Abstract data 1
0x10 dmcontrol Debug module control 9.1.2.1
0x11 dmstatus Debug module status 9.1.2.2
0x16 abstractcs Abstract control and status 9.1.24
0x17 command Abstract command 9.1.25
0x18 abstractauto | Abstract command autoexec 9.1.2.6
0x38 sbcs System bus access control and status 9.1.2.8
0x39 sbaddress0 System bus address 31:0 9.1.2.9
0x3C sbdata0 System bus data 31:0 9.1.2.10
0x3D sbdatal System bus data 63:32 9.1.2.11
0x40 haltsumO Halt summary 0 9.1.2.3

Note: ICCM, DCCM, and PIC memory ranges are only accessible using the access memory abstract command
method. SoC memories are accessible using either the access memory abstract command method or the system
bus access method.

Note: Abstract commands may only be executed when the core is in the debug halt (db-halt) state. However, SoC
memory locations may be accessed using the system bus access method, irrespective of the core’s state.

9.1.2.1 Debug Module Control Register (dmcontrol)
The dmcontrol register controls the overall Debug Module as well as the hart.

Note: On any given write, a debugger may only write ‘1’ to either the resumereq or ackhavereset bit. The other bit
must be written to ‘0’.

This register is mapped to the Debug Module Interface address space.

Table 9-7 Debug Module Control Register (dmcontrol, at Debug Module Offset 0x10)

Field Bits Description Access | Reset

haltreq 31 Halt request: RO/W 0

0: Clears halt request bit
Note: May cancel outstanding halt request.

1: Sets halt request bit
Note: Running hart halts whenever halt request bit is set.

resumereq 30 Resume request: RO/W1 0
0: No effect

1: Causes hart to resume, if halted
Note: Also clears resume ack bit for hart.

Note: Setting resumereq bit is ignored if haltreq bit is set.

hartreset 29 Not implemented (i.e., 0: Deasserted) R 0
ackhavereset 28 Reset core-internal, sticky havereset state: RO/W1 0
0: No effect

1: Clear havereset state

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 73 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022
Field Bits Description Access | Reset
Reserved 27 Reserved R 0
hasel 26 Selects definition of currently selected harts: R 0

0: Single currently selected hart (VeeR EH1 is single-thread)
hartsello 25:16 | Notimplemented (VeeR EHL1 is single-thread) R 0
hartselhi 15:6 Not implemented (VeeR EHL1 is single-thread) R 0
Reserved 5:4 Reserved R 0
setresethaltreq | 3 Not implemented R 0

Note: hasresethaltreq bit in dmstatus register (Table 9-8) is ‘0’
clrresethaltreq | 2 Not implemented R 0

Note: hasresethaltreq bit in dmstatus register (Table 9-8) is ‘0’
ndmreset 1 Controls reset signal from DM to VeeR EH1 core. Signal resets R/W 0

hart, but not DM. To perform a reset, debugger writes ‘1’, and then

writes ‘0’ to deassert reset.
dmactive 0 Reset signal for Debug Module (DM): R/W 0

0: Module's state takes its reset values
Note: Only dmactive bit may be written to value other than its
reset value. Writes to all other bits of this register are ignored.
1: Module functions normally

Debugger may pulse this bit low to get Debug Module into known

state.

Note: The core complex’s dbg_rst_1 signal (see Table 15-1)

resets the Debug Module. It should only be used to reset the Debug

Module at power up or possibly with a global reset signal which

resets the entire platform.

9.1.2.2 Debug Module Status Register (dmstatus)

The dmstatus register reports status for the overall Debug Module as well as the hart.

This register is read-only.

This register is mapped to the Debug Module Interface address space.

Table 9-8 Debug Module Status Register (dmstatus, at Debug Module Offset 0x11)

Field Bits Description Access | Reset
Reserved 31:23 | Reserved R 0
impebreak 22 Not implemented R 0
Note: VeeR EH1 does not implement a Program Buffer.
Reserved 21:20 | Reserved R 0
allhavereset 19 ‘1’ when hart has been reset and reset has not been acknowledged | R -
anyhavereset 18 ‘1’ when hart has been reset and reset has not been acknowledged | R -
allresumeack 17 ‘1’ when hart has acknowledged last resume request R -
anyresumeack | 16 ‘1’ when hart has acknowledged last resume request R -
allnonexistent 15 Not implemented (VeeR EHL1 is single-thread) R 0
Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 74 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Field Bits Description Access | Reset
anynonexistent | 14 Not implemented (VeeR EHL1 is single-thread) R 0
allunavail 13 ‘1’ when hart is unavailable®! R --
anyunavail 12 ‘1’ when hart is unavailable®! R --
allrunning 11 ‘1’ when hart is running R --
anyrunning 10 ‘1’ when hart is running R --
allhalted 9 ‘1’ when hart is halted R --
anyhalted 8 ‘1’ when hart is halted R -
authenticated 7 Not implemented (i.e., 1: Always authenticated) R 1
authbusy 6 Not implemented (i.e., 0: Authentication module never busy) R 0
hasresethaltreq | 5 Not implemented R 0
Note: VeeR EH1 implements halt-on-reset with haltreq set out of
reset method.
confstrptrvalid 4 Not implemented R 0
Note: VeeR EH1 does not provide information relevant to
configuration string.
version 3.0 Debug Module present, conforming to RISC-V Debug specification | R 2
Version 0.13.2

9.1.2.3 Halt Summary 0 Register (haltsumO0)

Each bit in the haltsumo register indicates whether a specific hart is halted or not. Since VeeR EHL1 is single-
threaded, only one bit is implemented.

Note: Unavailable/nonexistent harts are not considered to be halted.
This register is read-only.

This register is mapped to the Debug Module Interface address space.

Table 9-9 Halt Summary 0 Register (haltsum0, at Debug Module Offset 0x40)

Field Bits Description Access | Reset
Reserved 31:1 Reserved R 0
halted 0 ‘1’ when hart halted R 0

9.1.2.4 Abstract Control and Status Register (abstractcs)

The abstractcs register provides status information of the abstract command interface and enables clearing of
detected command errors.

Note: Writing this register while an abstract command is executing causes its cmderr field to be set to ‘1’ (i.e., ‘busy’),
ifitis ‘0.

This register is mapped to the Debug Module Interface address space.

31 Hart is in reset or ndmreset bit of dmstatus register is ‘1’

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 75 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022
Table 9-10 Abstract Control and Status Register (abstractcs, at Debug Module Offset 0x16)
Field Bits Description Access | Reset
Reserved 31:29 | Reserved R 0
progbufsize 28:24 | Not implemented R 0
Note: VeeR EH1 does not implement a Program Buffer.
Reserved 23:13 | Reserved 0
busy 12 Abstract command interface activity: 0
0: Abstract command interface idle
1: Abstract command currently being executed
Note: ‘Busy’ indication set when command register (see Section
9.1.2.5) is written, cleared after command has completed.
Reserved 11 Reserved R 0
cmderr 10:8 Set if abstract command fails. R/W1C | O
Reason for failure:
0 (none): No error
1 (busy): Abstract command was executing when command,
abstractcs, or abstractauto register was written, or when
data0® or datal register was read or written
2 (not supported): Requested command or option not supported,
regardless of whether hart is running or not (i.e., illegal command,
access register command not word-sized or postexec bit set, or
access memory command size larger than word)
3 (exception): Exception occurred while executing abstract
command (i.e., illegal register address, address outside of
ICCM/DCCM/PIC memory range but in internal memory region,
ICCM/DCCM uncorrectable ECC error, or ICCM/PIC access not
word-sized)
4 (halt/resume): Abstract command couldn't execute because hart
wasn't in required state (running/halted), or unavailable
5 (bus): Abstract command failed for SoC memory access due to
bus error (e.g., unmapped address, uncorrectable error, incorrect
alignment, or unsupported access size)
6: Reserved
7 (other): Register or memory access size not 32 bits wide or
unaligned
Note: Bits in this field remain set until cleared by writing ‘111’
Note: Next abstract command not started until value is reset to ‘0'.
Note: Only contains valid value if busy is ‘0’.
Reserved 74 Reserved 0
datacount 3.0 2 data registers implemented as part of abstract command interface 2

9.1.2.5 Abstract Command Register (command)

Writes to the command register cause the corresponding abstract command to be executed.

Writing this register while an abstract command is executing causes the cmderr field in theabstractcs register
(see Section 9.1.2.4) to be set to ‘1’ (i.e., ‘busy’), if it is ‘0. If the cmderr field is non-zero, writes to thecommand
register are ignored.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

76 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Note: A non-zero cmderr field inhibits starting a new abstract command to accommodate debuggers which, for
performance reasons, may send several commands to be executed in a row without checking the cmderr field in
between. Checking the cmderr field only at the end of a sequence of commands is safe because later commands
which might depend on a previous, but failed command are not executed.

Note: Access register and access memory abstract commands may only be executed when the core is in the debug
halt (db-halt) state. If the debugger is requesting the execution of an abstract command while the core is not in the
debug halt state, the command is aborted and the cmderr field is set to ‘4’ (i.e., ‘halt/resume’), if it is ‘0’

Note: The access memory abstract command method provides access to ICCM, DCCM, and PIC memory ranges as
well as to SoC memories.

This register is mapped to the Debug Module Interface address space.

Table 9-11 Abstract Command Register (command, at Debug Module Offset 0x17)

Field Bits Description Access | Reset

cmdtype 31:24 | Abstract command type: RO/W 0
0: Access Register Command
2: Access Memory Command

Note: Other values not implemented or reserved for future use.
Writing this field to value different than ‘0’ or ‘2’ causes abstract
command to fail and cmderr field of abstractcs register to be

setto ‘2",
Access Register Command
Reserved 23 Reserved R 0
aarsize 22:20 | Register access size: R/W 2

2: 32-bit access
Note: Other size values not implemented. Writing this field to
value different than ‘2’ causes abstract command to fail and
cmderr field of abstractcs register to be set to ‘2’, except if
transferis ‘0’

aarpostincrement | 19 Access register post-increment control: R/W 0
0: No post-increment

1: After every successful access register command completion,
increment regno field (wrapping around to 0)

postexec 18 Not implemented (i.e., 0: No effect) R 0

Note: Writing to ‘1’ causes abstract command to fail and cmderr
field of abstractcs register to be set to ‘2.

transfer 17 Transfer: R 1

0: Do not perform operation specified by write
Note: Selection of unimplemented options (except for
aarsize and regno fields) causes cmderr field of
abstractcs register to be set to ‘2'.

1: Perform operation specified by write
Note: Selection of unimplemented options causes abstract
command to fail and cmderr field of abstractcs register to
be setto ‘2.

write 16 Read or write register: RO/W 0

0 (read): Copy data from register specified in regno field into
datao register (Section 9.1.2.7)

1 (write): Copy data from datao register (Section 9.1.2.7) into
register specified in regno field

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 77 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

22/12/2022

Field

Bits

Description

Access

Reset

regno

15:0

Register access:
0x0000 - OXOFFF: CSRs
0x1000 - Ox101F: GPRs
0x1020 - OxFFFF: Not implemented or reserved

Note: Selecting illegal register address causes abstract
command to fail and cmderr field of abstractcs register to be
set to ‘3’, except if transfer is ‘0’

RO/W

Access Memory Command (ICCM, DCCM, PIC, and SoC Memories)

aamvirtual

23

Not implemented (i.e., O: Addresses are physical)

Note: VeeR EH1 supports physical addresses only. Since
physical and virtual address are identical, no error is flagged?
even if written to ‘1’.

aamsize

22:20

Memory access size:
0: 8-bit access (for DCCM and SoC memories)
1: 16-bit access (for DCCM and SoC memories)
2: 32-hit access (for ICCM, DCCM, PIC, and SoC memories)

Note: Writing this field to value ‘0’ or ‘1’ for ICCM or PIC memory
access causes abstract command to fail and cmderr field of
abstractcs register to be set to ‘3'.

Note: Other size values not implemented. Writing this field to
value higher than ‘2’ causes abstract command to fail and
cmderr field of abstractcs register to be set to ‘2'.

R/W

aampostincrement

19

Access memory post-increment control:
0: No post-increment
1: After every successful access memory command
completion, increment datal register (which contains

memory address, see Section 9.1.2.7) by number of bytes
encoded in aamsize field

R/W

Reserved

18:17

Reserved

write

16

Read or write memory location:

0 (read): Copy data from memory location specified indatal
register (i.e., address) into datao register (i.e., data)
(Section 9.1.2.7)

1 (write): Copy data from data@ register (i.e., data) into
memory location specified in datal register (i.e., address)
(Section 9.1.2.7)

RO/W

target-specific

15:14

Not implemented
Note: VeeR EH1 does not use target-specific bits.

Reserved

13:0

Reserved

%2 The RISC-V Debug specification [3] states that an implementation must fail accesses that it does not support. However, the
Debug Task Group community agreed in an email exchange on the group’s reflector as well as in a group meeting that not reporting
an error is acceptable for implementations without address translation (i.e., the physical address equals the virtual address).

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

78 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

9.1.2.6 Abstract Command Autoexec Register (abstractauto)

The abstractauto register controls if reading or writing the data@/1 registers (see Section 9.1.2.7) automatically
triggers the next execution of the abstract command in the command register (see Section 9.1.2.5). This feature
allows more efficient burst accesses.

Writing this register while an abstract command is executing causes the cmderr field in theabstractcs register
(see Section 9.1.2.4) to be setto ‘1’ (i.e., ‘busy’), if itis ‘0.

This register is mapped to the Debug Module Interface address space.

Table 9-12 Abstract Command Autoexec Register (abstractauto, at Debug Module Offset 0x18)

Field Bits Description Access | Reset
Reserved 31:2 Reserved R 0
autoexecdatal 1 Auto-execution control for datal register: R/W 0

0: No automatic triggering of abstract command execution

1: Reading or writing datal causes abstract command to be
executed again

autoexecdata0O 0 Auto-execution control for datao register: R/W 0
0: No automatic triggering of abstract command execution

1: Reading or writing data® causes abstract command to be
executed again

9.1.2.7 Abstract Data 0 / 1 Registers (data0/1)
The data0/1 registers are basic read/write registers which may be read or changed by abstract commands.

Note: The datacount field of the abstractcs register (see Table 9-10) indicates that 2 (out of possible 12) registers
are implemented in VeeR EH1.

The data0 register sources the value for and provides the return value of an abstract command. Thedatal register
provides the address for an access memory abstract command.

Note: Selecting an address outside of the ICCM, DCCM, or PIC memory range but in one of the core-internal
memory regions causes the abstract command to fail and the cmderr field of theabstractcs register to be set to
‘3'. Similarly, selecting an unmapped SoC memory address causes the abstract command to fail, provided the SoC
responds with a bus error, and the cmderr field of theabstractcs register to be setto ‘5'.

Accessing these registers while an abstract command is executing causes the cmderr field of theabstractcs
register (see Table 9-10) to be setto ‘1’ (i.e., ‘busy’), if it was ‘0.

Attempts to write the data0/1 registers while the busy bit of the abstractcs register (see Table 9-10) is set does
not change their value.

The values in these registers may not be preserved after an abstract command has been executed. The only
guarantees on their contents are the ones offered by the executed abstract command. If the abstract command fails,
no assumptions should be made about the contents of these registers.

These registers are mapped to the Debug Module Interface address space.

Table 9-13 Abstract Data 0 / 1 Register (data0/1, at Debug Module Offset 0x04 / 0x05)

Field Bits Description Access | Reset

data 31:.0 Abstract command data: R/W 0
dataO: data value (access register and access memory command)
datal: address (access memory command)

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 79 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

9.1.2.8 System Bus Access Control and Status Register (shcs)
The sbcs register provides controls and status information of the system bus access interface.

Note: The system bus access method provides access to SoC memories only. Access to ICCM, DCCM, and PIC
memory ranges is only available using the access memory abstract command method.

Note: The operation of the system bus access method does not depend on the core’s state. SoC memory locations
may be accessed using this method even when the core is running.

This register is mapped to the Debug Module Interface address space.

Table 9-14 System Bus Access Control and Status Register (shcs, at Debug Module Offset 0x38)

Field Bits Description Access | Reset

sbversion 31:29 | System Bus interface conforms to RISC-V Debug specification, R 1
Version 0.13.2

Reserved 28:23 | Reserved R 0

sbbusyerror 22 Set when debugger attempts to read data while a read is in R/W1C | O

progress, or when debugger initiates a new access while one is
still in progress (i.e., while sbbusy bit is set). Remains set until
explicitly cleared by debugger.

Note: When set, Debug Module cannot initiate more system bus
accesses.

sbbusy 21 System bus master interface status: R 0
0: System bus master idle
1: System bus master busy
(Set when read or write access requested, remains set until
access fully completed)
Note: Writes to this register while sbbusy bit is set result in
undefined behavior. Debugger must not write this register until it
reads sbbusy bit as ‘0.

Note: Bit reflects if system bus master interface is busy, not status
of system bus itself.

sbreadonaddr 20 Auto-read on address write: R/W 0
0: No auto-read on address write

1: Every write to sbaddresso (see Section 9.1.2.9)
automatically triggers system bus read at new address

sbaccess 19:17 | Access size for system bus access: R/W 2
0: 8-bit access

1: 16-bit access
2: 32-bit access
3: 64-bit access

Note: Other values not supported. No access performed, sberror
field setto ‘4".

sbautoincrement | 16 Auto-address increment: R/W 0
0: No auto-address increment

1: sbaddressO register (see Section 9.1.2.9) incremented by
access size (in bytes) selected in sbaccess field after every
successful system bus access

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 80 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Field Bits Description Access | Reset

sbreadondata 15 Auto-read on data read: R/W 0
0: No auto-read on data read

1: Every read from sbdatao register (see Section 9.1.2.10)
automatically triggers new system bus read at (possibly auto-
incremented) address

sberror 14:12 | Set when Debug Module's system bus master encounters an R/W1C | O
error:

While this field is non-zero, no more system bus accesses can be
initiated by the Debug Module.

0: No bus error
1: Not implemented (ho timeout)
2: Bad address accessed
3: Alignment error
4: Access of unsupported size requested
5..7: Not implemented (ho other error conditions)
Note: Bits in this field remain set until cleared by writing ‘111"

Note: Debug Module may not initiate next system bus access until
value is reset to ‘0’.

sbasize 11:5 Width of system bus addresses (in bits) R 32
shaccess128 4 128-bit system bus accesses not supported R 0
sbaccess64 3 64-bit system bus accesses supported R 1
sbaccess32 2 32-bit system bus accesses supported R 1
sbaccess16 1 16-bit system bus accesses supported R 1
sbaccess8 0 8-bit system bus accesses supported R 1

9.1.2.9 System Bus Address 31:0 Register (shaddress0)
The shaddresso register provides the address of the system bus access.

If the shreadonaddr bit of the sbcs register is ‘1, writing the sbaddresso register triggers a system bus read access
from the new address.

Note: The sberror and sbbusyerror fields of the sbcs register must both be ‘0’ for a system bus read operation to be
performed.

Note: If the system bus master interface is busy (i.e., sbbusy bit of thesbcs register is ‘1’) when a write access to
this register is performed, the sbbusyerror bit in the sbcs register is set and the access is aborted.

This register is mapped to the Debug Module Interface address space.

Table 9-15 System Bus Address 31:0 Register (sbaddress0, at Debug Module Offset 0x39)

Field Bits Description Access | Reset

address 31:.0 System bus address R/W 0

9.1.2.10 System Bus Data 31:0 Register (shdata0)

The sbdatao register holds the right-justified lower bits for system bus read and write accesses.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 81 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

A successful system bus read updates the sbhdata0/1 registers with the value read from the system bus at the
memory location addressed by the sbaddresso0 register. If the width of the read access is less than 64 bits, the
remaining high bits may take on any value.

Reading the shdatao register provides the current value of this register. If the sbreadondata bit of thesbcs register
is ‘1, reading this register also triggers a system bus read access which updates thesbdata0/1 registers with the
value read from the memory location addressed by the sbaddresso register.

Writing the sbdatao register triggers a system bus write access which updates the memory location addressed by
the sbaddresso register with the new values in the sbhdata@/1 registers.

Note: Only the sbhdata0 register has this behavior. Accessing the sbdatal register has no side effects. A debugger
must access the sbdatal register first, before accessing the shdata® register.

Note: The sberror and sbbusyerror fields of the sbcs register must both be ‘0’ for a system bus read or write
operation to be performed.

Note: If the system bus master interface is busy (i.e., shbusy bit of the sbcs register is ‘1’) when a read or write
access to this register is performed, the sbbusyerror bit in the sbcs register is set and the access is aborted.

This register is mapped to the Debug Module Interface address space.

Table 9-16 System Bus Data 31:0 Register (shdata0, at Debug Module Offset 0x3C)

Field Bits Description Access | Reset

data 31:.0 System bus data[31:0] for system bus read and write accesses R/W 0

9.1.2.11 System Bus Data 63:32 Register (sbdatal)
The sbdatal register holds the upper 32 bits of the 64-bit wide system bus for read and write accesses.

Note: If the system bus master interface is busy (i.e., shbusy bit of the sbcs register is ‘1’) when a read or write
access to this register is performed, the sbbusyerror bit in the sbcs register is set and the access is aborted.

This register is mapped to the Debug Module Interface address space.

Table 9-17 System Bus Data 63:32 Register (shdatal, at Debug Module Offset 0x3D)

Field Bits Description Access | Reset

data 31:.0 System bus data[63:32] for system bus read and write accesses R/W 0

9.1.3 Control/Status Registers in RISC-V CSR Address Space
A summary of standard RISC-V control/status registers with platform-specific adaptations in CSR space:

« Trigger Select Register (tselect) (see Section 9.1.3.1)

« Trigger Data 1 Register (tdatal) (see Section 9.1.3.2)

« Match Control Register (mcontrol) (see Section 9.1.3.3)

« Trigger Data 2 Register (tdata2) (see Section 9.1.3.4)

« Debug Control and Status Register (dcsr) (see Section 9.1.3.5)
« Debug PC Register (dpc) (see Section 9.1.3.6)

All reserved and unused bits in these control/status registers must be hardwired to ‘0’. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

9.1.3.1 Trigger Select Register (tselect)

Note: Since triggers can be used both by Debug Mode and M-mode, the debugger must restore this register if it
modified it.

This register is mapped to the standard read/write CSR address space.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 82 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Table 9-18 Trigger Select Register (tselect, at CSR 0x7A0)

Field Bits Description Access | Reset

Reserved 31:2 Reserved R 0

index 1.0 Index of trigger 0..3 R/W 0
Note: Triggers 0 and 2 may be chained, triggers 1 and 3 not.

9.1.3.2 Trigger Data 1 Register (tdatal)

This register is mapped to the standard read/write CSR address space.

Table 9-19 Trigger Data 1 Register (tdatal, at CSR 0x7A1)

Field Bits Description Access | Reset
type 31:28 R 2
dmode 27 See Table 9-20, “Match Control Register (mcontrol, at CSR 0x7A1)” below.

data 26:0

9.1.3.3 Match Control Register (mcontrol)
Note: VeeR EH1 does not support triggering on the data of a load or on the opcode of an executed instruction.

This register is mapped to the standard read/write CSR address space.

Table 9-20 Match Control Register (mcontrol, at CSR 0x7A1)

Field Bits Description Access | Reset
type 31:28 | Address/data match trigger (= mcontrol) R 2
dmode 27 Mode write privileges to tdatal/2 registers (Sections 9.1.3.2 and R/W 0

9.1.3.4) selected by tselect register (Section 9.1.3.1):

0: Both Debug Mode and M-mode may write tdatal/2 registers
selected by tselect register

1: Only Debug Mode may write tdatal/2 registers selected by
tselect register. Writes from M-mode are ignored.

Note: Only writable from Debug Mode.

maskmax 26:21 | 23! bytes is largest naturally aligned powers-of-two (NAPOT) range R 31
supported by hardware when match field is ‘1'.

hit 20 Set by hardware when this trigger matches. Allows to determine which | R/W 0
trigger(s) matched. May be set or cleared by trigger’s user at any time.

Note: For chained triggers, hit bit of a matching second trigger is not
set unless first trigger matches as well.

select 19 Match selection: R/W 0
0: Perform match on address
1: Perform match on store data value

timing 18 Action for this trigger is taken just before instruction that triggered it is R 0
committed, but after all preceding instructions are committed.

Note: No bus transaction is issued for an execute address trigger hit on
a load to a side-effect address.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 83 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

22/12/2022

Field

Bits

Description

Access

Reset

sizelo

17:16

Match size:
0: Trigger attempts to match against access of any size.

» Match against address (if select bit is ‘0’)
» Match against store data (if select bit is ‘1)
Note: Data is zero extended for byte or halfword stores.
Note: If match bit is ‘1’, the mask in the tdata2 register is applied
independent of the select bit value (i.e., in address or data matches).

Note: Other match size values not implemented.

R

action

15:12

Action to take when trigger fires:

0: Raise breakpoint exception (used when software wants to use
trigger module without external debugger attached)

1: Enter Debug Mode (only supported when trigger's dmode bit is ‘1)
Note: Other values reserved for future use.

Note: Triggers do not fire if this field is ‘0’ and interrupts are disabled®
(i.e., mie bit of mstatus standard RISC-V register is ‘0’).

R/W

chain

11

Trigger chaining:
0: When this trigger matches, the configured action is taken.

1: While this trigger does not match, it prevents the trigger with the
next index from matching.
Note: Supported for triggers 0 and 2 only, attempts to set this bit
for triggers 1 and 3 are ignored.

Note: In VeeR EH1, only pairs of triggers (i.e., triggers 0/1 and
triggers 2/3) are chainable.

Note: If chain bit of trigger 0/2 is ‘1’, it is chained to trigger 1/3. Only
action field of trigger 1/3 is used (i.e., action field of trigger 0/2 is
ignored). The action on second trigger is taken if and only if both
triggers in chain match at the same time.

Note: Because the chain bit affects the next trigger, hardware resets it
to ‘0’ for mcontrol register writes with dmode bit of ‘0’ if the next trigger
has a dmode bit of ‘1’. In addition, hardware ignores writes to the
mcontrol register which would set the dmode bit to ‘1’ if the previous
trigger has both a dmode bit of ‘0’ and a chain bit of ‘1'. Debuggers
must avoid the latter case by checking the chain bit of the previous
trigger when writing the mcontrol register.

R/W
(for
triggers
0 and
2)

R

(for
triggers
1 and
3)

match

10:7

Match control:
0: Matches when value equals tdata2 register’s (Section 9.1.3.4)
value3*
1: Matches when top M bits of value match top M bits of tdata2
register’s (Section 9.1.3.4) value
(M is 31 minus the index of least-significant bit containing 0 in
tdataz2 register)

Note: Other values not implemented or reserved for future use.

R/W

m

When set, enable this trigger in M-mode

R/W

Reserved

Reserved

% To enable native debugging of M-mode code, VeeR EH1 implements the simpler but more restrictive solution of preventing
triggers with the action field set to ‘0’ (i.e., breakpoint exception) while interrupts are disabled, as described in Section 5.1, ‘Native
M-Mode Triggers’ of the RISC-V Debug specification [3].

3 Bit 0 of tdata2 register is ignored for instruction address matches.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

84 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

22/12/2022

Field Bits Description Access | Reset
S 4 Not implemented (VeeR EH1 is M-mode only) R 0
u 3 Not implemented (VeeR EH1 is M-mode only) R 0
execute 2 When set, trigger fires on address of executed instruction R/W 0
Note: For writes, written to ‘0’ if select bit is written to ‘1’.
store 1 When set, trigger fires on address or data of store R/W 0
load 0 When set, trigger fires on address of load R/W 0
Note: For writes, written to ‘0’ if select bit is written to ‘1’.
9.1.3.4 Trigger Data 2 Register (tdata2)
This register is mapped to the standard read/write CSR address space.
Table 9-21 Trigger Data 2 Register (tdata2, at CSR 0x7A2)
Field Bits Description Access | Reset
value 31.0 Match value: R/W 0
» Address or data value for match:
« Address of load, store, or executed instruction®
» Data value of store
* Match mask
(see match field of mcontrol register (Table 9-20) set to ‘1")
9.1.3.5 Debug Control and Status Register (dcsr)

The dcsr register controls the behavior and provides status of the hart in Debug Mode.

The RISC-V Debug specification [3], Section 4.8.1 documents some required and several optional features. Table
9-22 describes the required features, the partial support of optional features in VeeR EH1, and indicates features
not supported with “Not implemented”.

Note: This register is accessible in Debug Mode only. Attempting to access this register in machine mode raises an
illegal instruction exception.

This register is mapped to the standard read/write CSR address space.

Table 9-22 Debug Control and Status Register (dcsr, at CSR 0x7B0)

Field Bits Description Access | Reset
xdebugver | 31:28 | External debug support exists as described in this chapter and [3] R 4
Reserved 27:16 | Reserved R 0
ebreakm 15 0: ebreak in M-mode behaves as described in RISC-V Privileged R/W 0
specification [2]
1: ebreak in M-mode enters Debug Mode
Reserved 14 Reserved 0
ebreaks 13 Not implemented (VeeR EH1 is M-mode only) 0
ebreaku 12 Not implemented (VeeR EH1 is M-mode only) 0
Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 85 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Field Bits Description Access | Reset

stepie 11 0: Interrupts disabled during single stepping R/W 0
1: Interrupts enabled during single stepping
Note: Debugger must not change value while hart is running.

stopcount 10 0: Increment counters as usual R/W 0

1: Don't increment any counters (incl. cycle and instret) while in
Debug Mode or on ebreak entering Debug Mode (referred value for
most debugging scenarios)

stoptime 9 Increment timers same as in non-debug mode R 0

cause 8:6 Reason for Debug Mode entry (if multiple reasons in single cycle, set R 0
cause to highest priority):

1: ebreak instruction was executed (priority 3)
2: Trigger Module caused a breakpoint exception (priority 4, highest)

3: Debugger or MPC interface (see Table 5-4) requested entry to
Debug Mode using haltreq (priority 1)

4: Hart single-stepped because step was set (priority O, lowest)

5: Hart halted directly out of reset due to resethaltreq (also acceptable
to report ‘3’) (priority 2)
Other values reserved for future use.

Reserved 5 Reserved R 0

mprven 4 Not implemented (i.e., 0: mprv field inmstatus register ignored in R 0
Debug Mode)

nmip 3 Non-Maskable Interrupt (NMI) pending for hart when set R 0

Note: NMI may indicate a hardware error condition, reliable debugging
may no longer be possible once bit is set.

step 2 When set and not in Debug Mode, hart only executes single instruction | R/W 0
and enters Debug Mode. If instruction does not complete due to
exception, hart immediately enters Debug Mode before executing trap
handler, with appropriate exception registers set.

Note: Debugger must not change value while hart is running.

prv 1:0 Indicates privilege level hart was operating in when Debug Mode was R 3
entered (3 = M-mode)

9.1.3.6 Debug PC Register (dpc)

The dpc register provides the debugger information about the program counter (PC) when entering Debug Mode and
control where to resume (RISC-V Debug specification [3], Section 4.8.2).

Upon entry to Debug Mode, the dpc register is updated with the address of the next instruction to be executed. The
behavior is described in more detail in Table 9-23 below.

When resuming, the hart's PC is updated to the address stored in thedpc register. A debugger may write the dpc
register to change where the hart resumes.

Note: This register is accessible in Debug Mode only. Attempting to access this register in machine mode raises an
illegal instruction exception.

This register is mapped to the standard read/write CSR address space.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 86 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022
Table 9-23 Debug PC Register (dpc, at CSR 0x7B1)
Field Bits Description Access | Reset
dpc 31:0 Address captured for: R/W 0
ebreak:
Address of ebreak instruction
Single step:
Address of instruction which would be executed next if not in Debug
Mode (i.e., PC + 4 for 32-bit instructions which don't change
program flow, destination PC on taken jumps/branches, etc.)
Trigger module:
If timing (see timing bitinmcontrol register in Table 9-20) is:
0: Address of instruction which caused trigger to fire
1: Address of next instruction to be executed when Debug Mode
was entered
Halt request:
Address of next instruction to be executed when Debug Mode was
entered
Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 87 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

10 Low-Level Core Control

This chapter describes some low-level core control registers.

10.1 Control/Status Registers

A summary of platform-specific control/status registers in CSR space:

« Feature Disable Control Register (mfdc) (see Section 10.1.1)
* Clock Gating Control Register (mcgc) (see Section 10.1.2)

All reserved and unused bits in these control/status registers must be hardwired to ‘0’. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

10.1.1 Feature Disable Control Register (mfdc)

The mfdc register hosts low-level core control bits to disable specific features. This may be useful in case a feature
intended to increase core performance should prove to have problems.

Note: fence. i instructions are required before and after writes to themfdc register.

Note: Except for side-effect store pipelining for cores with AXI4 buses, the default state of the controllable features is
‘enabled’. Firmware may turn off a feature if needed.

This register is mapped to the non-standard read/write CSR address space.

Table 10-1 Feature Disable Control Register (mfdc, at CSR 0x7F9)

Field Bits Description Access | Reset
Reserved 31:19 | Reserved R 0
dgc 18:16 | DMA QoS control (see Section 2.13.3) R/W 7
Reserved 15:14 | Reserved R 0
bldmad 13 Blocking loads and blocking DMA disable (see Section 2.13.4): R/W 0

0: blocking loads/DMA
1: non-blocking loads/DMA

Reserved 12:11 Reserved R 0
did 10 Dual issue disable: R/W 0
0: dual issue

1: single issue

Reserved 9 Reserved R 0

cecd 8 Core ECC check disable: R/W 0
0: ICCM/DCCM ECC checking enabled
1: ICCM/DCCM ECC checking disabled

sad 7 Secondary ALU disable: R/W 0
0: enable secondary ALU
1: disable secondary ALU

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 88 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

22/12/2022

Field

Bits

Description

Access

Reset

sespd

Side-effect store pipelining disable:
0: side-effect stores are pipelined

1: side-effect stores block all subsequent bus transactions until

store response with default value received

Note: Side-effect loads always block and freeze pipeline (except

if bldmad bit is set)

Note: Reset value depends on selected bus core build argument

RIW 0 (AHB-Lite)
1 (AX14)

dnbd

DIV non-blocking disable:
0: enable non-blocking divides
1: disable non-blocking divides

R/W 0

fdd

Fast divide disable:
0: enable fast divide
1: disable fast divide

R/W 0

bpd

Branch prediction disable:
0: enable branch prediction and return address stack
1: disable branch prediction and return address stack

R/W 0

wbcd

Write Buffer (WB) coalescing disable:
0: enable Write Buffer coalescing
1: disable Write Buffer coalescing

R/W 0

Reserved

Reserved

pd

Pipelining disable:
0: pipelined execution
1: single instruction execution

R/W 0

10.1.2 Clock Gating Control Register (mcgc)

The mcgc register hosts low-level core control bits to override clock gating for specific units. This may be useful in
case a unit intended to be clock gated should prove to have problems when in lower power mode.

Note: The default state of the clock gating overrides is ‘disabled’. Firmware may turn off clock gating (i.e., set the
clock gating override bit) for a specific unit if needed.

This register is mapped to the non-standard read/write CSR address space.

Table 10-2 Clock Gating Control Register (mcgc, at CSR 0x7F8)

Field Bits Description Access | Reset
Reserved 31:9 Reserved R 0
misc 8 Miscellaneous clock gating override: R/W 0
0: enable clock gating
1: clock gating override
dec 7 DEC clock gating override: R/W 0
0: enable clock gating
1: clock gating override
Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 89 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

22/12/2022

Field

Bits

Description

Access

Reset

exu

EXU clock gating override:
0: enable clock gating
1: clock gating override

R/W

ifu

IFU clock gating override:
0: enable clock gating
1: clock gating override

R/W

Isu

LSU clock gating override:
0: enable clock gating
1: clock gating override

R/W

bus

Bus clock gating override:
0: enable clock gating
1: clock gating override

R/W

pic

PIC clock gating override:
0: enable clock gating
1: clock gating override

R/W

dccm

DCCM clock gating override:

0: enable clock gating
1: clock gating override

R/W

iccm

ICCM clock gating override:
0: enable clock gating
1: clock gating override

R/W

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

90 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

11 Standard RISC-V CSRs with Core-Specific Adaptations

A summary of standard RISC-V control/status registers in CSR space with platform-specific adaptations:

¢ Machine Interrupt Enable (mie) and Machine Interrupt Pending (mip) Registers (see Section 11.1.1)
e Machine Cause Register (mcause) (see Section 11.1.2)

All reserved and unused bits in these control/status registers must be hardwired to ‘0’. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

11.1.1 Machine Interrupt Enable (mie) and Machine Interrupt Pending (mip) Registers

The standard RISC-V mie and mip registers hold the machine interrupt enable and interrupt pending bits,
respectively. Since VeeR EH1 only supports machine mode, all supervisor- and user-specific bits are not
implemented. In addition, the mie/mip registers also host the platform-specific local interrupt enable/pending bits
(shown with a gray background in Table 11-1 and Table 11-2 below).

Table 11-1 Machine Interrupt Enable Register (mie, at CSR 0x304)

Field Bits Description Access | Reset
Reserved 31 Reserved R 0
mceie 30 Correctable error local interrupt enable R/W 0
mitie0 29 Internal timer O local interrupt enable R/W 0
mitiel 28 Internal timer 1 local interrupt enable R/W 0
Reserved 27:12 | Reserved R 0
meie 11 Machine external interrupt enable R/W 0
Reserved 10:8 Reserved R 0
mtie 7 Machine timer interrupt enable R/W 0
Reserved 6:4 Reserved R 0
msie 3 Machine software interrupt enable®® R/W 0
Reserved 2:0 Reserved R 0

Table 11-2 Machine Interrupt Pending Register (mip, at CSR 0x344)

Field Bits Description Access | Reset
Reserved 31 Reserved R 0
mceip 30 Correctable error local interrupt pending R 0
mitip0 29 Internal timer O local interrupt pending R 0
mitip1 28 Internal timer 1 local interrupt pending R 0
Reserved 27:12 | Reserved R 0
meip 11 Machine external interrupt pending R 0
Reserved 10:8 Reserved R 0
mtip 7 Machine timer interrupt pending R 0

% The msie bit is physically implemented but has no functional effect since the ‘software interrupt’ request signal is hardwired to ‘0.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 91 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022
Field Bits Description Access | Reset
Reserved 6:0 Reserved R 0

11.1.2 Machine Cause Register (mcause)

The standard RISC-V mcause register indicates the cause for a trap as shown in Table 11-3, including standard
exceptions/interrupts, platform-specific local interrupts (with light gray background), and NMI causes (with dark gray

background).

Note: The mcause register has WLRL (Write Legal value, Read Legal value) behavior.

Table 11-3 Machine Cause Register (mcause, at CSR 0x342)

Value
Type Trap Code Description Section(s
yp P mcause[31:0] o ()
NMI N/A 0x0000_0000 NMI pin assertion 2.15
1 0x0000_0001 Instruction access fault 2.1.4,2.1.6,
and 3.4
2 0x0000_0002 lllegal instruction
3 0x0000_0003 Breakpoint
4 0x0000_0004 Load address misaligned 275
Exception
5 0x0000_0005 Load access fault 2.1.4,2.1.6,
and 3.4
6 0x0000_0006 Store/AMO address misaligned 275
7 0x0000_0007 Store/AMO access fault 2.1.4,2.1.6,
and 3.4
11 0x0000_000B Environment call from M-mode
7 0x8000_0007 Machine timer® interrupt
11 0x8000_000B Machine external interrupt
Interrupt 28 0x8000_001C | Machine internal timer 1 local interrupt 4.3
29 0x8000_001D | Machine internal timer O local interrupt 4.3
30 0x8000_001E Machine correctable error local interrupt 2.7.2
0xF000_0000 Machine D-bus store error NMI 3151 il
NMI N/A
0xF000_0001 | Machine D-bus non-blocking load error NMI 3'1'51 il
Note: All other values are reserved.
3 Core external timer
Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 92 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

12 CSR Address Map

12.1 Standard RISC-V CSRs
Table 12-1 lists the VeeR EH1 core-specific standard RISC-V Machine Information CSRs.

Table 12-1 VeeR EH1 Core-Specific Standard RISC-V Machine Information CSRs

Number | Privilege | Name Description Value

0x301 MRW misa ISA and extensions (Note: writes ignored) 0x4000_1104
OxF11 MRO mvendorid | Vendor ID 0x0000_0045
OxF12 MRO marchid Architecture ID 0x0000_000B
O0xF13 MRO mimpid Implementation ID 0x0000_0006
OxF14 MRO mhartid Hardware thread 1D 0x0000_0000

Table 12-2 lists the VeeR EH1 standard RISC-V CSR address map.

Table 12-2 VeeR EH1 Standard RISC-V CSR Address Map

Number | Privilege | Name Description Section
0x300 MRW mstatus Machine status
0x304 MRW mie Machine interrupt enable 11.1.1
0x305 MRW mtvec Machine trap-handler base address
0x323 MRW mhpmevent3 Machine performance-monitoring event selector 3
0x324 MRW mhpmevent4 Machine performance-monitoring event selector 4
0x325 MRW mhpmevent5 Machine performance-monitoring event selector 5 72l
0x326 MRW mhpmevent6 Machine performance-monitoring event selector 6
0x340 MRW mscratch Scratch register for machine trap handlers
0x341 MRW mepc Machine exception program counter
0x342 MRW mcause Machine trap cause 11.1.2
0x343 MRW mtval Machine bad address or instruction
0x344 MRW mip Machine interrupt pending 11.1.1
0x7A0 MRW tselect Debug/Trace trigger register select 9.131
tdatal First Debug/Trace trigger data 9.1.3.2
Ox7Al1 MRW
mcontrol Match control 9.1.3.3
Ox7A2 MRW tdata2 Second Debug/Trace trigger data 9.1.34
0x7B0 DRW dcsr Debug control and status register 9.1.35
0x7B1 DRW dpc Debug PC 9.1.3.6
0xB0O0 MRW mcycle Machine cycle counter 7.2.1
0xB02 MRW minstret Machine instructions-retired counter 7.2.1

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 93 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022
Number | Privilege | Name Description Section
0xB03 MRW mhpmcounter3 Machine performance-monitoring counter 3
0xB0O4 MRW mhpmcounter4 Machine performance-monitoring counter 4
0xB05 MRW mhpmcounter5 Machine performance-monitoring counter 5 2l
0xB06 MRW mhpmcounter6 Machine performance-monitoring counter 6
0xB80 MRW mcycleh Upper 32 hits of mcycle, RV32| only 7.2.1
0xB82 MRW minstreth Upper 32 bits of minstret, RV32I only 7.2.1
0xB83 MRW mhpmcounter3h | Upper 32 bits of mhpmcounter3, RV32l only
0xB84 MRW mhpmcounterdh | Upper 32 bits of mhpmcounter4, RV32I only
0xB85 MRW mhpmcounter5h | Upper 32 bits of mhpmcounter5, RV32l only 72l
0xB86 MRW mhpmcounter6h | Upper 32 bits of mhpmcounter6, RV32l only

12.2 Non-Standard RISC-V CSRs

Table 12-3 summarizes the VeeR EH1 non-standard RISC-V CSR address map.

Table 12-3 VeeR EH1 Non-Standard RISC-V CSR Address Map
Number | Privilege | Name Description Section
0x7CO MRW mrac Region access control 28.1
0x7C2 MRW mcpc Core pause control 5.5.2
0x7C4 DRW dmst Memory synchronization trigger (Debug Mode only) 28.2
0x7C6 MRW mpmc Power management control 5.5.1
0x7C8 DRW dicawics I-cache array/way/index selection (Debug Mode only) 8.5.1
0x7C9 DRW dicad0 I-cache array data 0 (Debug Mode only) 8.5.2
0x7CA DRW dicadl I-cache array data 1 (Debug Mode only) 8.5.3
0x7CB DRW dicago I-cache array go (Debug Mode only) 8.5.4
0x7D0 MRW mgpmc Group performance monitor control 7221
0x7D2 MRW mitcntO Internal timer counter O 44.1
0x7D3 MRW mitb0 Internal timer bound 0 442
0x7D4 MRW mitctlO Internal timer control O 4.4.3
0x7D5 MRW mitcntl Internal timer counter 1 44.1
0x7D6 MRW mitb1 Internal timer bound 1 4.4.2
0x7D7 MRW mitctl/1 Internal timer control 1 4.4.3
0x7FO0 MRW micect I-cache error counter/threshold 351
Ox7F1 MRW miccmect | ICCM correctable error counter/threshold 35.2
Ox7F2 MRW mdccmect | DCCM correctable error counter/threshold 353
Ox7F8 MRW mcgc Clock gating control 10.1.2

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 94 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022
Number | Privilege | Name Description Section
O0x7F9 MRW mfdc Feature disable control 10.1.1
0xBCO MRW mdeau D-Bus error address unlock 284
0xBC8 MRW meivt External interrupt vector table 6.11.6
0xBC9 MRW meipt External interrupt priority threshold 6.11.5
0xBCA MRW meicpct External interrupt claim ID / priority level capture trigger 6.11.8
0xBCB MRW meicidpl External interrupt claim ID’s priority level 6.11.9
0xBCC MRW meicurpl External interrupt current priority level 6.11.10
O0xFCO MRO mdseac D-bus first error address capture 2.8.3
0xFC8 MRO meihap External interrupt handler address pointer 6.11.7

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 95 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

13 Interrupt Priorities

22/12/2022

Table 13-1 summarizes the VeeR EH1 platform-specific (Local) and standard RISC-V (External and Timer) relative

interrupt priorities.

Table 13-1 VeeR EH1 Platform-specific and Standard RISC-V Interrupt Priorities

Interrupt Section
Highest Interrupt Priority | Non-Maskable Interrupt (standard RISC-V) | 2.15
External interrupt (standard RISC-V) 6
Correctable error (local interrupt) 2.7.2
Timer interrupt (standard RISC-V)
Internal timer O (local interrupt) 4.3
4.3

Lowest Interrupt Priority Internal timer 1 (local interrupt)

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

96 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

14 Clock and Reset

This chapter describes clocking and reset signals used by the VeeR EH1 core complex.

14.1 Features

The VeeR EH1 core complex’s clock and reset features are:

« Support for independent clock ratios for four separate system bus interfaces
0 System bus clock ratios controlled by SoC
« Single core complex clock input
0 System bus clock ratios controlled by enable signals
« Single core complex reset signal
o0 Ability to reset to Debug Mode
* Separate Debug Module reset signal
o Allows to interact with Debug Module when core complex is still in reset

14.2 Clocking

14.2.1 Regular Operation

The VeeR EH1 core complex is driven by a single clock (clk). All input and output signals, except those listed in
Table 14-1, are synchronous to c k.

The core complex provides three master system bus interfaces (for instruction fetch, load/store data, and debug) as
well as one slave (DMA) system bus interface. The SoC controls the clock ratio for each system bus interface via the
clock enable signal (*_bus_c1lk_en). The clock ratios selected by the SoC may be the same or different for each

system bus.

Figure 14-1 depicts the conceptual relationship of the clock € 1k), system bus enable (*_bus_c1k_en) used to
select the clock ratio for each system bus, and the data (*data) of the respective system bus.

ck S S N~

* bus_clk_en _// \\

* bus_clk / | N\ |

*data

Figure 14-1 Conceptual Clock, Clock-Enable, and Data Timing Relationship

Note that the clock net is not explicitly buffered, as the clock tree is expected to be synthesized during place-and-
route. The achievable clock frequency depends on the configuration, the sizes and configuration of I-cache and
I/DCCMs, and the silicon implementation technology.

14.2.2 System Bus-to-Core Clock Ratios

Figure 14-2 to Figure 14-9 depict the timing relationships of clock, clock-enable, and data for the supported system
bus clock ratios from 1:1 (i.e., the system bus and core run at the same rate) to 1.8 (i.e., the system bus runs eight
times slower than the core).

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 97 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

N\

clk _/

N\

22/12/2022

N\

[N\
[\

* bus_clk

20 WA

’
>

*data

Figure 14-2 1:1 System Bus-to-Core Clock Ratio

* bus_clk_en

clk _/__/__/
/ N

* bus_clk \

N\
—

¢

¢
[/

*data

Figure 14-3 1:2 System Bus-to-Core Clock Ratio

o N/ LY

* bus_clk_en

JES—

—~

* bus_clk

~

*data

Figure 14-4 1:3 System Bus-to-Core Clock Ratio

w_/ N/ \

* bus_clk_en

JEE—

*_bus_clk

—~

*data

Figure 14-5 1:4 System Bus-to-Core Clock Ratio

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

98 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

* bus_clk_en

— —

*_bus_clk

*data

Figure 14-6 1:5 System Bus-to-Core Clock Ratio

— .

* bus_clk_en

* bus_clk

*data

Figure 14-7 1:6 System Bus-to-Core Clock Ratio

* bus_clk_en

JES—

* bus_clk

*data

Figure 14-8 1:7 System Bus-to-Core Clock Ratio

* bus_clk_en

— —

*_bus_clk

*data

Figure 14-9 1:8 System Bus-to-Core Clock Ratio

14.2.3 Asynchronous Signals

Table 14-1 provides a list of signals which are asynchronous to the core clock € 1k). Signals which are inputs to the
core complex are synchronized to c 1k in the core complex logic. Signals which are outputs of the core complex must

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 99 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

22/12/2022

be synchronized outside of the core complex logic if the respective receiving clock domain is driven by a different

clock than c 1k.

Note that each asynchronous input passes through a two-stage synchronizer. The signal must be asserted for at
least two full c 1k cycles to guarantee it is detected by the core complex logic. Shorter pulses might be dropped by

the synchronizer circuit.

Table 14-1 Core Complex Asynchronous Signals

Signal Dir | Description

Interrupts

extintsrc_req['RV_PIC_TOTAL_INT:1] | in External interrupts

timer_int in Standard RISC-V timer interrupt
nmi_int in Non-Maskable Interrupt

Power Management Unit (PMU) Interface

i_cpu_halt_req

in

PMU halt request to core

i_cpu_run_req

in

PMU run request to core

Multi-Processor Controller (MPC) Debug Interface

mpc_debug_halt_req in MPC debug halt request to core

mpc_debug_run_req in MPC debug run request to core

JTAG

jtag_tck in JTAG Test Clock

jtag_tms in JTAG Test Mode Select (synchronous to jtag_tck)

jtag_tdi in JTAG Test Data In (synchronous to jtag_tck)

jtag_trst_n in JTAG Test Reset

jtag_tdo out | JTAG Test Data Out (synchronous to jtag_tck)
14.3 Reset

The VeeR EH1 core complex provides two reset signals, the core complex reset (see Section 14.3.1) and the

Debug Module reset (see Section 14.3.2).

14.3.1 Core Complex Reset (rst_I)

As shown in Figure 14-10, the core complex reset signal (rst_1) is active-low, may be asynchronously asserted, but
must be synchronously deasserted to avoid any glitches. Therst_1 input signal is not synchronized to the core
clock (c 1K) inside the core complex logic. All core complex flops are reset asynchronously.

clk \

N/

rst_| \\\\\\\ N

N\

4

Figure 14-10 Conceptual Clock and Reset Timing Relationship

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

100 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Note that the core complex clock (c Lk) must be stable before the core complex reset (rst_1) is deasserted.

Note: From a backend perspective, care should be taken during place-and-route optimization steps to adequately
build buffer tree and distribution network of the rst_1 signal. Slew (transition time) targets should be in the same
range as functional signals and distribution delays should be closely matched to clock delays, to maintain reasonable
latencies and skews. Further, rst_1 specific timing checks can be performed during final signoff timing to ensure
proper functionality, though they are more complex and challenging to model through static timing analysis.

Note: The core complex reset signal resets the entire VeeR EH1 core complex, except the Debug Module.

14.3.2 Debug Module Reset (dbg_rst_I)

The Debug Module reset signal (dbg_rst_1) is an active-low signal which resets the VeeR EH1 core complex’s
Debug Module as well as the synchronizers between the JTAG interface and the core complex. The Debug Module
reset signal may be connected to the power-on reset signal of the SoC. This allows an external debugger to interact
with the Debug Module when the core complex reset signal (rst_1) is still asserted.

If this layered reset functionality is not required, thedbg_rst_1 signal may be tied to the rst_1 signal outside the
core complex.

14.3.3 Debugger Initiating Reset via JTAG Interface

A debugger may also initiate a reset of the core complex logic via the JTAG interface. Note that such a reset
assertion is not visible to the SoC. Resetting the core complex while the core is accessing any SoC memory
locations may result in unpredictable behavior. Recovery may require an assertion of the SoC master reset.

14.3.4 Core Complex Reset to Debug Mode

The RISC-V Debug specification [3] states a requirement that the debugger must be able to be in control from the first
executed instruction of a program after a reset.

The dmcontrol register (see Section 9.1.2.1) of the Debug Module controls the core-complex-internalndmreset
(non-debug module reset) signal. This signal resets the core complex (except for the Debug Module and Debug
Transport Module).

The following sequence is used to reset the core and execute the first instruction in Debug Mode (i.e., db-halt state):

1. Take Debug Module out of reset
* Set dmactive bit of dmcontrol register (dmcontrol = 0x0000_0001)

2. Reset core complex
e Set ndmreset bit of dmcontrol register (dmcontrol = 0x0000_0003)

3. While in reset, assert halt request with ndmreset still asserted
* Set haltreq bit of dmcontrol register (dmcontrol = 0x8000_0003)

4. Take core complex out of reset with halt request still asserted
e Clear ndmreset bit of dmcontrol register (dmcontrol = 0x8000_0001)

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 101 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

15 VeeR EH1 Core Complex Port List

Table 15-1 lists the core complex signals. Not all signals are present in a given instantiation. For example, a core
complex can only have one bus interface type (AXI4 or AHB-Lite). Signals which are asynchronous to the core

complex clock (c 1k) are marked with “(async)” in the ‘Description’ column.

Table 15-1 Core Complex Signals

Signal Dir | Description

Clock and Clock Enables
clk in Core complex clock
ifu_bus_clk_en in IFU master system bus clock enable
Isu_bus _clk_en in LSU master system bus clock enable
dbg_bus_clk_en in Debug master system bus clock enable
dma_bus_clk_en in DMA slave system bus clock enable

Reset
rst_| in Core complex reset (excl. Debug Module)
rst_vec[31:1] in Core reset vector
dbg_rst_| in Debug Module reset (incl. JTAG synchronizers)
Interrupts

nmi_int in Non-Maskable Interrupt (async)
nmi_vec[31:1] in Non-Maskable Interrupt vector
timer_int in Standard RISC-V timer interrupt (async)
extintsrc_req['RV_PIC_TOTAL_INT:1] in External interrupts (async)

System Bus Interfaces

AXI4
Instruction Fetch Unit Master AX1437
Write address channel signals
ifu_axi_awvalid out | Write address valid (hardwired to 0)
ifu_axi_awready in Write address ready
ifu_axi_awid['RV_IFU_BUS_TAG-1:0] out | Write address ID
ifu_axi_awaddr[31:0] out | Write address
ifu_axi_awlen[7:0] out | Burstlength
ifu_axi_awsize[2:0] out | Burstsize
ifu_axi_awburst[1:0] out | Bursttype
ifu_axi_awlock out | Lock type
ifu_axi_awcache[3:0] out | Memory type

%7 The IFU issues only read, but no write transactions. However, the IFU write address, data, and response channels are present,

but the valid/ready signals are tied off to disable those channels.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

102 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

22/12/2022

Signal Dir | Description

ifu_axi_awprot[2:0] out | Protection type

ifu_axi_awqos[3:0] out | Quality of Service (QoS)
ifu_axi_awregion[3:0] out | Region identifier

Write data channel signals

ifu_axi_wvalid out | Write valid (hardwired to 0)
ifu_axi_wready in Write ready

ifu_axi_wdata[63:0] out | Write data

ifu_axi_wstrb[7:0] out | Write strobes

ifu_axi_wlast out | Write last

Write response channel signals

ifu_axi_bvalid in Write response valid

ifu_axi_bready out | Write response ready (hardwired to 0)
ifu_axi_bid[[RV_IFU_BUS_TAG-1:0] in Response ID tag

ifu_axi_bresp[1:0] in Write response

Read address channel signals

ifu_axi_arvalid out | Read address valid

ifu_axi_arready in Read address ready

ifu_axi_arid[RV_IFU_BUS_TAG-1:0] out | Read address ID
ifu_axi_araddr[31:0] out | Read address

ifu_axi_arlen[7:0] out | Burst length (hardwired to 0b0O000_0000)
ifu_axi_arsize[2:0] out | Burst size (hardwired to 0b011)
ifu_axi_arburst[1:0] out | Burst type (hardwired to 0b01)
ifu_axi_arlock out | Lock type (hardwired to 0)
ifu_axi_arcache[3:0] out | Memory type (hardwired to Ob1111)
ifu_axi_arprot[2:0] out | Protection type (hardwired to 0b100)
ifu_axi_arqos[3:0] out | Quality of Service (QoS) (hardwired to 0b0000)
ifu_axi_arregion[3:0] out | Region identifier

Read data channel signals

ifu_axi_rvalid in Read valid

ifu_axi_rready out | Read ready
ifu_axi_rid[RV_IFU_BUS_TAG-1:0] in Read ID tag

ifu_axi_rdata[63:0] in Read data

ifu_axi_rresp[1:0] in Read response

ifu_axi_rlast in Read last

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

103 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

Signal Dir | Description

Load/Store Unit Master AXI4

Write address channel signals

Isu_axi_awvalid out | Write address valid
Isu_axi_awready in Write address ready
Isu_axi_awid['RV_LSU_BUS_TAG-1:0] out | Write address ID
Isu_axi_awaddr[31:0] out | Write address

Isu_axi_awlen[7:0] out | Burst length (hardwired to 0b0O000_0000)
Isu_axi_awsize[2:0] out | Burst size

Isu_axi_awburst[1:0] out | Bursttype (hardwired to 0b01)
Isu_axi_awlock out | Lock type (hardwired to 0)
Isu_axi_awcache[3:0] out | Memory type

Isu_axi_awprot[2:0] out | Protection type (hardwired to 0b000)
Isu_axi_awqos[3:0] out | Quality of Service (QoS) (hardwired to 0b0000)
Isu_axi_awregion[3:0] out | Region identifier

Write data channel signals

Isu_axi_wvalid out | Write valid

Isu_axi_wready in Write ready

Isu_axi_wdata[63:0] out | Write data

Isu_axi_wstrb[7:0] out | Write strobes

Isu_axi_wlast out | Write last

Write response channel signals

Isu_axi_bvalid in Write response valid

Isu_axi_bready out | Write response ready
Isu_axi_bid[[RV_LSU_BUS_TAG-1:0] in Response ID tag

Isu_axi_bresp[1:0] in Write response

Read address channel signals

Isu_axi_arvalid out | Read address valid

Isu_axi_arready in Read address ready

Isu_axi_arid[RV_LSU_BUS_TAG-1:0] out | Read address ID
Isu_axi_araddr[31:0] out | Read address

Isu_axi_arlen[7:0] out | Burst length (hardwired to 0b0O000_0000)
Isu_axi_arsize[2:0] out | Burstsize

Isu_axi_arburst[1:0] out | Burst type (hardwired to 0b01)
Isu_axi_arlock out | Lock type (hardwired to 0)
Isu_axi_arcache[3:0] out | Memory type

Isu_axi_arprot[2:0] out | Protection type (hardwired to 0b000)

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

104 of 115

22/12/2022

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

22/12/2022

Signal Dir | Description

Isu_axi_arqos[3:0] out | Quality of Service (QoS) (hardwired to 0b0000)
Isu_axi_arregion[3:0] out | Region identifier

Read data channel signals

Isu_axi_rvalid in Read valid

Isu_axi_rready out | Read ready
Isu_axi_rid[RV_LSU_BUS_TAG-1:0] in Read ID tag

Isu_axi_rdata[63:0] in Read data

Isu_axi_rresp[1:0] in Read response

Isu_axi_rlast in Read last

System Bus (Debug) Master AXI4

Write address channel signals

sb_axi_awvalid out | Write address valid

sb_axi_awready in Write address ready

sb_axi_awid[RV_SB_BUS_TAG-1:0] out | Write address ID (hardwired to 0)
sb_axi_awaddr[31:0] out | Write address

sb_axi_awlen[7:0] out | Burst length (hardwired to 0b0000_0000)
sb_axi_awsize[2:0] out | Burst size

sh_axi_awburst[1:0] out | Bursttype (hardwired to 0b01)
sb_axi_awlock out | Lock type (hardwired to 0)
sb_axi_awcache[3:0] out | Memory type (hardwired to Ob1111)
sb_axi_awprot[2:0] out | Protection type (hardwired to 0b000)
sb_axi_awqos[3:0] out | Quality of Service (QoS) (hardwired to 0b0000)
sb_axi_awregion[3:0] out | Region identifier

Write data channel signals

sb_axi_wvalid out | Write valid

sb_axi_wready in Write ready

sb_axi_wdata[63:0] out | Write data

sb_axi_wstrb[7:0] out | Write strobes

sb_axi_wlast out | Write last

Write response channel signals

sb_axi_bvalid in Write response valid

sb_axi_bready out | Write response ready
sb_axi_bid[RV_SB_BUS_TAG-1:0] in Response ID tag

sb_axi_bresp[1:0] in Write response

Read address channel signals

sb_axi_arvalid out | Read address valid

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

105 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

Signal Dir | Description

sb_axi_arready in Read address ready
sb_axi_arid[RV_SB_BUS_TAG-1:0] out | Read address ID (hardwired to 0)
sb_axi_araddr[31:0] out | Read address

sb_axi_arlen[7:0] out | Burst length (hardwired to 0b0000_0000)
sb_axi_arsize[2:0] out | Burstsize

sb_axi_arburst[1:0] out | Burst type (hardwired to Ob01)
sb_axi_arlock out | Lock type (hardwired to 0)
sb_axi_arcache[3:0] out | Memory type (hardwired to 0b0000)
sb_axi_arprot[2:0] out | Protection type (hardwired to 0b000)
sb_axi_arqos[3:0] out | Quality of Service (QoS) (hardwired to 0b0000)
sb_axi_arregion[3:0] out | Region identifier

Read data channel signals

sb_axi_rvalid in Read valid

sb_axi_rready out | Read ready
sb_axi_rid[[RV_SB_BUS_TAG-1:0] in Read ID tag

sb_axi_rdata[63:0] in Read data

sb_axi_rresp[1:0] in Read response

sb_axi_rlast in Read last

DMA Slave AXI4

Write address channel signals

dma_axi_awvalid in Write address valid
dma_axi_awready out | Write address ready
dma_axi_awid[RV_DMA_BUS_TAG-1:0] in Write address ID
dma_axi_awaddr[31:0] in Write address

dma_axi_awlen[7:0] in Burst length

dma_axi_awsize[2:0] in Burst size

dma_axi_awburst[1:0] in Burst type

dma_axi_awprot[2:0] in Protection type

Write data channel signals

dma_axi_wvalid in Write valid

dma_axi_wready out | Write ready

dma_axi_wdata[63:0] in Write data

dma_axi_wstrb[7:0] in Write strobes

dma_axi_wlast in Write last

Write response channel signals

dma_axi_bvalid out | Write response valid

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 106 of 115

22/12/2022

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022
Signal Dir | Description
dma_axi_bready in Write response ready
dma_axi_bid[[RV_DMA_BUS_TAG-1:0] out | Response ID tag
dma_axi_bresp[1:0] out | Write response
Read address channel signals
dma_axi_arvalid in Read address valid
dma_axi_arready out | Read address ready
dma_axi_arid[RV_DMA_BUS_TAG-1:0] in Read address ID
dma_axi_araddr[31:0] in Read address
dma_axi_arlen[7:0] in Burst length
dma_axi_arsize[2:0] in Burst size
dma_axi_arburst[1:0] in Burst type
dma_axi_arprot[2:0] in Protection type
Read data channel signals
dma_axi_rvalid out | Read valid
dma_axi_rready in Read ready
dma_axi_rid[RV_DMA_BUS_TAG-1:0] out | Read ID tag
dma_axi_rdata[63:0] out | Read data
dma_axi_rresp[1:0] out | Read response
dma_axi_rlast out | Read last

AHB-Lite

Instruction Fetch Unit Master AHB-Lite
Master signals
haddr[31:0] out | System address
hburst[2:0] out | Bursttype (hardwired to 0b000)
hmastlock out | Locked transfer (hardwired to 0)
hprot[3:0] out | Protection control
hsize[2:0] out | Transfer size
htrans[1:0] out | Transfer type
hwrite out | Write transfer
Slave signals
hrdata[63:0] in Read data
hready in Transfer finished
hresp in Slave transfer response
Load/Store Unit Master AHB-Lite
Master signals
Isu_haddr[31:0] out | System address

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 107 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

22/12/2022

Signal Dir | Description

Isu_hburst[2:0] out | Bursttype (hardwired to 0b000)
Isu_hmastlock out | Locked transfer (hardwired to 0)
Isu_hprot[3:0] out | Protection control
Isu_hsize[2:0] out | Transfer size

Isu_htrans[1:0] out | Transfer type

Isu_hwdata[63:0] out | Write data

Isu_hwrite out | Write transfer

Slave signals

Isu_hrdata[63:0] in Read data

Isu_hready in Transfer finished

Isu_hresp in Slave transfer response
System Bus (Debug) Master AHB-Lite

Master signals

sb_haddr[31:0] out | System address

sb_hburst[2:0] out | Bursttype (hardwired to 0b000)
sb_hmastlock out | Locked transfer (hardwired to 0)
sb_hprot[3:0] out | Protection control

sb_hsize[2:0] out | Transfer size

sb_htrans[1:0] out | Transfer type

sb_hwdata[63:0] out | Write data

sb_hwrite out | Write transfer

Slave signals

sb_hrdata[63:0] in Read data

sb_hready in Transfer finished

sb_hresp in Slave transfer response

DMA Slave AHB-Lite

Slave signals

dma_haddr[31:0] in System address
dma_hburst[2:0] in Burst type

dma_hmastlock in Locked transfer

dma_hprot[3:0] in Protection control
dma_hsize[2:0] in Transfer size

dma_htrans[1:0] in Transfer type
dma_hwdata[63:0] in Write data

dma_hwrite in Write transfer

dma_hsel in Slave select

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

108 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9—

22/12/2022

Signal Dir | Description
dma_hreadyin in Transfer finished in
Master signals
dma_hrdata[63:0] out | Read data
dma_hreadyout out | Transfer finished
dma_hresp out | Slave transfer response
Power Management Unit (PMU) Interface
i_cpu_halt_req in PMU halt request to core (async)
o_cpu_halt_ack out | Core acknowledgement for PMU halt request
0_cpu_halt_status out | Core halted indication
i_cpu_run_req in PMU run request to core (async)
0_cpu_run_ack out | Core acknowledgement for PMU run request

Multi-Processor Controll

er (MPC) Debug Interface

mpc_debug_halt_req in MPC debug halt request to core (async)
mpc_debug_halt_ack out | Core acknowledgement for MPC debug halt request
mpc_debug_run_req in MPC debug run request to core (async)
mpc_debug_run_ack out | Core acknowledgement for MPC debug run request
mpc_reset_run_req in Core start state control out of reset
o_debug_mode_status out | Core in Debug Mode indication

debug_brkpt_status out | Hardware/software breakpoint indication

Performance Counter Activity

dec_tlu_perfcntO[1:0] out | Performance counter O incrementing (pipeline 11, 10)

dec_tlu_perfcntl[1:0] out | Performance counter 1 incrementing (pipeline 11, 10)

dec_tlu_perfcnt2[1:0] out | Performance counter 2 incrementing (pipeline 11, 10)

dec_tlu_perfcnt3[1:0] out | Performance counter 3 incrementing (pipeline 11, 10)
Trace Port®®

trace_rv_i_insn_ip[63:0] out | Instruction opcode

trace_rv_i_address_ip[63:0] out | Instruction address

trace_rv_i_valid_ip[2:0] out | Instruction trace valid

trace_rv_i_exception_ip[2:0] out | Exception

trace_rv_i_ecause_ip[4:0] out | Exception cause

trace_rv_i_interrupt_ip[2:0] out | Interrupt exception

trace_rv_i_tval_ip[31:0] out | Exception trap value

% The core provides trace information for a maximum of two instructions and one interrupt/exception per clock cycle. Note that the
only information provided for interrupts/exceptions is the cause, the interrupt/exception flag, and the trap value. The core's trace
port busses are minimally sized, but wide enough to deliver all trace information the core may produce in one clock cycle. Not
provided signals for the upper bits of the interface related to the interrupt slot might have to be tied off in the SoC.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0

109 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

Signal Dir | Description
JTAG Port
jtag_tck in JTAG Test Clock (async)
jtag_tms in JTAG Test Mode Select (async, sync to jtag_tck)
jtag_tdi in JTAG Test Data In (async, sync to jtag_tck)
jtag_trst_n in JTAG Test Reset (async)
jtag_tdo out | JTAG Test Data Out (async, sync to jtag_tck)
jtag_id[31:1] in JTAG IDCODE register value (bit O tied internally to 1)
Testing
scan_mode in May be used to enable logic scan test, if implemented
(must be ‘0’ for normal core operation)
mbist_mode in May be used to enable MBIST for core-internal
memories, if implemented
(should be tied to ‘0’ if not used)

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 110 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

16 VeeR EH1 Core Build Arguments

16.1 Memory Protection Build Arguments

16.1.1 Memory Protection Build Argument Rules

The rules for valid memory protection address (INST/DATA_ACCESS_ADDRXx) and mask
(INST/DATA_ACCESS_MASKX) build arguments are:

« INST/DATA_ACCESS_ADDRX must be 64B-aligned (i.e., 6 least significant bits must be ‘0’)

* INST/DATA_ACCESS_MASKx must be an integer multiple of 64B minus 1 (i.e., 6 least significant bits must
be ‘1)

* For INST/DATA_ACCESS_MASKYX, all ‘0’ bits (if any) must be left-justified and all ‘1’ bits must be right-
justified

* No bitin INST/DATA_ACCESS_ADDRXx may be ‘1’ if the corresponding bit in
INST/DATA_ACCESS_MASKX is also ‘1’ (i.e., for each bit position, at most one of the bits in
INST/DATA_ACCESS_ADDRx and INST/DATA_ACCESS_MASKx may be '1")

16.1.2 Memory Protection Build Arguments

¢ Instructions
0 Instruction Access Window x (x = 0..7)
Enable (INST_ACCESS_ENABLEX): 0,1 (0 = window disabled; 1 = window enabled)
Base address (INST_ACCESS_ADDRXx): 0x0000_0000..0xFFFF_FFCO (see Section
16.1.1)
Mask (INST_ACCESS_MASKX): 0x0000_003F..0xFFFF_FFFF (see Section 16.1.1)
* Data
o Data Access Window x (x = 0..7)
Enable (DATA_ACCESS_ENABLEX): 0,1 (0 = window disabled; 1 = window enabled)
Base address (DATA_ACCESS_ADDRXx): 0x0000_0000..0xFFFF_FFCO (see Section
16.1.1)
Mask (DATA_ACCESS_MASKX): 0x0000_003F..0xFFFF_FFFF (see Section 16.1.1)

16.2 Core Memory-Related Build Arguments

16.2.1 Core Memories and Memory-Mapped Register Blocks Alignment Rules

Placement of VeeR EH1’s core memories and memory-mapped register blocks in the 32-bit address range is very
flexible. Each memory or register block may be assigned to any region and within the region’s 28-bit address range
to any start address on a naturally aligned power-of-two address boundary relative to its own size (i.e., start_address
= n x size, whereas n is a positive integer number).

For example, the start address of an 8KB-sized DCCM may be 0x0000_0000, 0x0000_2000, 0x0000_4000,
0x0000_6000, etc. A memory or register block with a non-power-of-two size must be aligned to the next bigger
power-of-two size. For example, the starting address of a 48KB-sized DCCM must aligned to a 64KB boundary, i.e.,
it may be 0x0000_0000, 0x0001_0000, 0x0002_0000, 0x0003_0000, etc.

Also, no two memories or register blocks may overlap each other, and no memory or register block may cross a
region boundary.

The start address of the memory or register block is specified with an offset relative to the start address of the region.
This offset must follow the rules described above.

16.2.2 Memory-Related Build Arguments

« ICCM
0 Enable (RV_ICCM_ENABLE): 0, 1 (0 = no ICCM; 1 = ICCM enabled)
0 Region (RV_ICCM_REGION): 0..15
0 Offset (RV_ICCM_OFFSET): (offset in bytes from start of region satisfying rules in Section 16.2.1)
0 Size (RV_ICCM_SIZE): 4, 8, 16, 32, 64, 128, 256, 512 (in KB)

o Region (RV_DCCM_REGION): 0..15

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 111 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

o Offset (RV_DCCM_OFFSET): (offset in bytes from start of region satisfying rules in Section 16.2.1)
o Size (RV_DCCM_SIZE): 4, 8, 16, 32, 48, 64, 128, 256, 512 (in KB)
* I-Cache
o Enable (RV_ICACHE_ENABLE): 0, 1 (0 = no I-cache; 1 = |-cache enabled)
0 Size (RV_ICACHE_SIZE): 16, 32, 64, 128, 256 (in KB)
o Protection (RV_ICACHE_ECC): 0, 1 (0 = parity; 1 = ECC)
* PIC Memory-mapped Control Registers
0 Region (RV_PIC_REGION): 0..15
o Offset (RV_PIC_OFFSET): (offset in bytes from start of region satisfying rules in Section 16.2.1)
o0 Size (RV_PIC_SIZE): 32, 64, 128, 256 (in KB)

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 112 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

17 VeeR EH1 Compliance Test Suite Failures

17.1 I-MISALIGN_LDST-01

Test Location:

https://github.com/riscv/riscv-compliance/blob/master/riscv-test-suite/rv32i/src/I-MISALIGN LDST-01.S

Reason for Failure:

The VeeR EH1 core supports unaligned accesses to memory addresses which are not marked as having side
effects (i.e., to idempotent memory). Load and store accesses to non-idempotent memory addresses take
misalignment exceptions.

(Note that this is a known issue with the test suite (https://github.com/riscv/riscv-compliancel/issues/22) and is
expected to eventually be fixed.)

Workaround:

Configure the address range used by this test to “non-idempotent” in themrac register.

17.2 I-MISALIGN_JMP-01

Test Location:

https://github.com/riscv/riscv-compliance/blob/master/riscv-test-suite/rv32i/src/I-MISALIGN JMP-01.S

Reason for Failure:

The VeeR EH1 core supports the standard “C” 16-bit compressed instruction extension. Compressed instruction
execution cannot be turned off. Therefore, branch and jump instructions to 16-bit aligned memory addresses do not
trigger misalignment exceptions.

(Note that this is a known issue with the test suite (https://github.com/riscv/riscv-compliance/issues/16) and is
expected to eventually be fixed.)

Workaround:

None.

17.3 I-FENCE.I-01 and fence i

Test Location:

https://github.com/riscv/riscv-compliance/blob/master/riscv-test-suite/rv32Zifencei/src/I-FENCE.I-01.S

and

https://github.com/riscv/riscv-compliance/blob/master/riscv-test-suite/rv32ui/src/fence i.S

Reason for Failure:

The VeeR EH1 core implements separate instruction and data buses to the system interconnect (i.e., Harvard
architecture). The latencies to memory through the system interconnect may be different for the two interfaces and
the order is therefore not guaranteed.

Workaround:

Configuring the address range used by this test to “non-idempotent” in themrac register forces the core to wait for
a write response before fetching the updated line. Alternatively, the system interconnect could provide ordering
guarantees between requests sent to the instruction fetch and load/store bus interfaces (e.g., matching latencies
through the interconnect).

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 113 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

17.4 breakpoint

Test Location:

https://github.com/riscv/riscv-compliance/blob/master/riscv-test-suite/rv32mi/src/breakpoint.S

Reason for Failure:
The VeeR EH1 core disables breakpoints when the mie bit in the standard mstatus register is cleared.

(Note that this behavior is compliant with the RISC-V External Debug Support specification, Version 0.13.2. See
Section 5.1, ‘Native M-Mode Triggers’ in [3] for more details.)

Workaround:

None.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 114 of 115

RISC-V VeeR™ EH1 Programmer's Reference Manual —Rev. 1.9— 22/12/2022

18 VeeR EH1 Errata

18.1 Back-to-back Write Transactions Not Supported on AHB-Lite Bus

Description:

The AHB-Lite bus interface for LSU is not optimized for write performance. Each aligned store is issued to the bus
as a single write transaction followed by an idle cycle. Each unaligned store is issued to the bus as multiple back-
to-back byte write transactions followed by an idle cycle. These idle cycles limit the achievable bus utilization for
writes.

Symptoms:
Potential performance impact for writes with AHB-Lite bus.
Workaround:

None.

18.2 Debug Write to minstret Register Stores Incremented Value

Description:

A debugger may attempt to initialize the minstret register to a specific value by using the access register abstract
command. The abstract command’s write operation itself is incorrectly counted as a retired instruction and causes
the actually value written to theminstret register to be one higher than the intended value.

Symptoms:

When initializing the minstret register to a specific value from a debugger using the access register abstract
command, then reading back this register indicates that the actual written value is one higher than the intended
value.

Workaround:

When issuing an access register abstract command from a debugger to write theminstret register, the written
value should be one less than the intended value to compensate for the incorrect increment. To initialize the 64-bit
minstret counter to ‘0’, the value OxFFFF_FFFF must be written to theminstreth register first, followed by
writing OXFFFF_FFFF to the minstret register.

18.3 Debug Abstract Command Register May Return Non-Zero Value on Read

Description:

The RISC-V External Debug specification specifies the abstract command command) register as write-only (see
Section 3.14.7 in [3]). However, the VeeR EH1 implementation supports write as well as read operations to this
register. This may help a debugger’s feature discovery process, but is not fully compliant with the RISC-V External
Debug specification. Because the expected return value for reading this register is always zero, it is unlikely that a
debugger expecting a zero value would attempt to read it.

Symptoms:
Reading the debug abstract command (command) register may return a non-zero value.
Workaround:

A debugger should avoid reading the abstract command register if it cannot handle non-zero data.

Copyright © 2022 CHIPS Alliance; Licensed under Apache-2.0 115 of 115

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134

